Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T04:14:40.472Z Has data issue: false hasContentIssue false

Taql growth hormone gene polymorphism and milk production traits in Holstein-Friesian cattle

Published online by Cambridge University Press:  02 September 2010

M. Falaki
Affiliation:
Molecular Biology and Animal Physiology Department, Faculty of Agronomy, 13 Avenue Maréchal Juin, B-5030 Gembloux, Belgium
M. Sneyers
Affiliation:
Molecular Biology and Animal Physiology Department, Faculty of Agronomy, 13 Avenue Maréchal Juin, B-5030 Gembloux, Belgium Microbiology Department, Faculty of Agronomy, 6 Avenue Maréchal Juin, B-5030 Gembloux, Belgium
A. Prandi
Affiliation:
Dipartimento di Scienze degli Alimenti, Sezione di Fisiologia Veterinaria e Nutrizione, Università degli Studi di Udine, 33010 Pagnacco (Udine), Italy
S. Massart
Affiliation:
Molecular Biology and Animal Physiology Department, Faculty of Agronomy, 13 Avenue Maréchal Juin, B-5030 Gembloux, Belgium Microbiology Department, Faculty of Agronomy, 6 Avenue Maréchal Juin, B-5030 Gembloux, Belgium
C. Corradini
Affiliation:
Dipartimento di Scienze degli Alimenti, Sezione di Fisiologia Veterinaria e Nutrizione, Università degli Studi di Udine, 33010 Pagnacco (Udine), Italy
A. Formigoni
Affiliation:
Facultà di Medicina Veterinaria, Istituto di Zootecnia e Nutrizione Animate, Università degli Studi di Bologna, 40064 Ozzano Emilia (Bologna), Italy
A. Burny
Affiliation:
Molecular Biology and Animal Physiology Department, Faculty of Agronomy, 13 Avenue Maréchal Juin, B-5030 Gembloux, Belgium
D. Portetelle
Affiliation:
Microbiology Department, Faculty of Agronomy, 6 Avenue Maréchal Juin, B-5030 Gembloux, Belgium
R. Renaville
Affiliation:
Molecular Biology and Animal Physiology Department, Faculty of Agronomy, 13 Avenue Maréchal Juin, B-5030 Gembloux, Belgium
Get access

Abstract

The positive effect of administration of growth hormone (GH) on milk production and its presence in selected dairy cattle lines of higher GH concentrations prompted an examination of the presence of restriction fragment length polymorphism (RFLP) in the growth hormone gene using the enzyme Taq/ and to investigate associations between this polymorphism and milk production traits. Blood was sampled from 251 Italian Holstein-Friesian cows. Three fragment bands, arbitrarily denoted A, B and E, of 6·2, 5·2 and 1·9 kilobase (kb), respectively, were observed. Their combinations exhibited six patterns, AA, AB, ABE, AE, BB and BE with frequencies of 64·5, 24·3, 2·4, 6·8, 1·4 and 0·4%, respectively. The statistical analysis was performed using linear mixed animal models. The results indicated an effect of the GHgene polymorphic Taq/restriction fragment on 305-day productions of milk, fat and protein; the low frequency pattern AE showed productions inferior to those for AA or AB patterns. Effect estimates of AA, AB and AE were, respectively, 200 (s.e. 215), 218 (s.e. 267) and -910 (s.e. 380) kg for milk production, 7·75 (s.e. 7·98), 16·10 (s.e. 9·79) and -22·14 (s.e. 14·42) kg for fat production, and 6·78 (s.e. 6·21), 8·57 (s.e. 7·58) and -20·74 (s.e. 11·14) kg for protein production. The average substitution effect estimates of E were -891 (s.e. 278), -26·56 (s.e. 10·16) and -24·50 (s.e. 9·43) kg for milk, fat and protein yields, respectively. In conclusion, these results suggest that the E fragment deserves further designed and specific study.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagnato, A., Jansen, G., Cerutti, F. and Pagnacco, G. 1991. Caratteri produttivi della Frisona Italiana ereditabilita e correlazioni. Atti IX congresso nazionale, Associazione Scientifica di Prodnzione Animale, ISMEA Agricoltura Ricarca, vol. I, pp. 595-601. Roma, Italia.Google Scholar
Barsh, G. S., Seeburg, P. H. and Gelinas, R. E. 1983. The human growth hormone gene family: structure and evolution of the chromosomal locus. Nucleic Acid Research 11: 39393958.CrossRefGoogle ScholarPubMed
Beckmann, J. S. and Soller, M. 1986. Restriction fragment length polymorphisms in plant genetic improvement. In Report on the research project ‘Restriction fragment length polymorphisms in varietal identification and genetic improvement’ of Binational (U.S.-Israel) Agriculture Research and Development Fund (BARD). Department of Plant Genetics and Breeding, The Volcani Center, Bet Dagan, Israel.Google Scholar
Boldman, K. G., Kriese, L. A., Van Vleck, L. D. and Kachman, S. D. 1993. A set of programs to obtain estimates of variances and covariances. In A manual for use of MTDFREML (draft). USDA ARS, US Meat Animal Research Center, Clay, NE.Google Scholar
Bovenhuis, H. and Boer, I. J. M. de. 1994. The potential contribution of milk protein loci to improvement of dairy cattle. Proceedings of the fifth world congress on genetics applied to livestock production, Guelph 19: 311318.Google Scholar
Chu, E., George, A., Liu, J. and Ng, E. 1984. SPARSPAK: Waterloo sparse matrix package user's guide for SPARSPAK-A. Research report CS-84–36, Department of Computer Science, University of Waterloo, ON, Canada.Google Scholar
Cowan, C. M., Dentine, M. R., Ax, R. L. and Schuler, L. A. 1989. Restriction fragment length polymorphisms associated with growth hormone and prolactin genes in Holstein bulls: evidence for a novel growth hormone allele. Animal Genetics 20: 157165.CrossRefGoogle ScholarPubMed
Cowan, C. M., Dentine, M. R., Ax, R. L. and Schuler, L. A. 1990. Structural variation around prolactin gene linked to quantitative traits in an elite Holstein sire family. Theoretical and Applied Genetics 79: 577582.CrossRefGoogle Scholar
Dodson, M. V., Davis, S. L., Ohlson, D. L. and Ercanbrack, S. K. 1983. Temporal patterns of growth hormone, prolactin and thyrotropin secretion in Targhee rams selected for rate and efficiency of gain. Journal of Animal Science 57: 338342.CrossRefGoogle ScholarPubMed
Falaki, M., Renaville, R., Sneyers, M., Prandi, A., Massart, S., Devolder, A., Burny, A. and Portetelle, D. 1994. Restriction fragment length polymorphisms in cattle. Journal of Dairy Science 77: 316 (abstr.).Google Scholar
Gordon, D. F., Quick, D. P., Erwin, C. R., Donelson, J. E. and Maurer, R. A. 1983. Nucleotide sequence of the bovine growth hormone chromosomal gene. Molecular and Cellular Endocrinology 33: 8195.CrossRefGoogle ScholarPubMed
Kashi, Y., Hallerman, E. and Soller, M. 1990. Markerassisted selection of candidate bulls for progeny testing programmes. Animal Production 51: 6374.Google Scholar
Klindt, J. 1988. Relationships among growth hormone and prolactin secretory parameter estimates in Holstein bulls and their predicted differences for lactational traits. Journal of Animal Science 66: 27842790.CrossRefGoogle ScholarPubMed
Lucy, M. C., Hauser, S. D., Eppard, P. J., Krivi, G. G., Clark, J. H., Bauman, D. E. and Collier, R. J. 1993. Variants of somatotropin cattle: gene frequencies in major dairy breeds and associated milk production. Domestic Animal Endocrinology 10: 325333.CrossRefGoogle ScholarPubMed
Parchury, N., Chester-Jones, H., Loseth, K. J., Wheaton, J. E., Hansen, L. B., Ziegler, D. M. and Crabo, B. G. 1993. Somatotropin concentrations in plasma and scrotal circumference in bull calves with different dairy merit. Journal of Dairy Science 76: 445452.CrossRefGoogle Scholar
Peel, C. J. and Bauman, D. E. 1987. Somatotropin and lactation. Journal of Dairy Science 70: 474486.CrossRefGoogle ScholarPubMed
Reinecke, R. L., Barnes, M. A., Akers, R. M. and Pearson, R. E. 1993. Effect of selection for milk yield on lactation performance and plasma growth hormone, insulin and IGF-I in first lactation Holstein cows. Journal of Dairy Science 76: 286 (abstr.).Google Scholar
Renaville, R., Sneyers, M., Falaki, M., Prandi, A., Massart, S., Devolder, A., Boonen, A., Marchand, E., Burny, A. and Portetelle, D. 1994. Taa/restriction fragment length polymorphism for bovine growth hormone in bovine breeds selected for milk and/or meat. Journal of Animal Science 72: 316 (abstr.).Google Scholar
Rocha, J. L., Baker, J. F., Womack, J. E., Sanders, J. O. and Taylor, J. F. 1992. Statistical associations between restriction fragment length polymorphisms and quantitative traits in beef cattle. Journal of Animal Science 70: 33603370.CrossRefGoogle ScholarPubMed
Sneyers, M., Renaville, R., Falaki, M., Massart, S., Devolder, A., Boonen, F., Marchand, E., Prandi, A., Burny, A. and Portetelle, D. 1994. Taql restriction fragment length polymorphisms for growth hormone in bovine breeds and their association with quantitative traits. Growth Regulation 4: 108112.Google Scholar
Soller, M. and Beckmann, J. S. 1982. Restriction fragment length polymorphisms and genetic improvement. Proceedings of the second world congress on genetics applied livestock production, Madrid 6: 396404.Google Scholar
Soller, M. and Beckmann, J. S. 1985. Restriction fragment length polymorphisms and animal genetic improvement. Reviews in Rural Science 6: 1018.Google Scholar
Valinsky, A., Shani, M. and Gootwine, E. 1990. Restriction fragment length polymorphism in sheep at the growth hormone locus is the result of variation in gene number. Animal Biotechnology 2: 135144.CrossRefGoogle Scholar
Weller, J. I., Kashi, Y. and Soller, M. 1990. Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. Journal of Dairy Science 73: 25252537.CrossRefGoogle ScholarPubMed
Woolliams, J. A., Angus, K. D. and Wilson, S. B. 1993. Endogenous pulsing and simulated release of growth hormone in dairy calves of high and low genetic merit. Animal Production 56: 18.Google Scholar
Woolliams, J. A. and Lovendahl, P. 1991. Physiological attributes of male and juvenile cattle differing in genetic merit for milk yield: a review. Livestock Production Science 29: 16.CrossRefGoogle Scholar
Woolliams, J. A. and Smith, C. 1988. The value of indicator traits in the genetic improvement of dairy cattle. Animal Production 46: 333345.CrossRefGoogle Scholar