Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T22:56:17.678Z Has data issue: false hasContentIssue false

Quantitative aspects of ruminant predicting animal performance

Published online by Cambridge University Press:  09 March 2007

M. D. Hanigan
Affiliation:
LongView Nutrition Center, Land O'Lakes, Inc., 100 Danforth Drive, Gray Summit, MO 63039, USAE-mail MHanigan@LandOLakes.com
Get access

Abstract

Rations for dairy cattle are currently balanced to meet needs for energy, protein, vitamins, and minerals. While individual vitamins and minerals are considered, energy and protein are generally treated in aggregate even though entities within those aggregates can affect milk yield and composition. Significant efforts have been undertaken to describe ruminal metabolism in detail, but descriptions of post-absorptive metabolism assume constant fractional conversions of energy and protein to milk. A quantitative understanding of nutrient metabolism by the post-absorptive tissues is required, and the splanchnic tissues are critical components of the post-absorptive system as they mediate absorption of nutrients and play a rôle in regulation of metabolite availability.

Glucogenic precursor supply can significantly affect endocrine status as well as splanchnic release of glucose, acetate, lactate, ketones, and the non-essential amino acids. Although the relative affinities of the splanchnic tissues for the essential amino acids (AA) are low as compared with the udder, net clearance on a daily basis represents approximately 2/3 of the net supply to the animal due largely to recycling of AA back to the tissue bed. This could be significantly reduced by stimulating removal and use by the udder as splanchnic affinities are much lower than mammary affinities. Additionally, the essential AA composition of absorbed protein is significantly modified by these tissues due to differing affinities for each of the AA. The extent of that modification is not a fixed constant but rather a function of several factors including milk yield. The accuracy of our current feeding systems could be improved if such variable rates of substrate removal replaced current static estimates.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agricultural and Food Research Council. 1993. Energy and protein requirements of ruminants. CAB International, wallingford, Oxon.Google Scholar
Agricultural and Food Research Council. 1998. Responses in the yield of milk constituents to the intake of nutrients by dairy cows. AFRC Technical Committee on a Responce ot Nutrientd, report no.11. CAB International, Wallingford, Oxon.Google Scholar
Annison, E. F., Bickerstaffe, R. and Linzell, J. L. 1974. Glucose and fatty acid metabolism in cows producing milk of low fat content. Journal of Agricultural Science, Cambridge 82: 8795.CrossRefGoogle Scholar
Balcells, J., Seal, C. J. and Parker, D. S. 1995. Effect of intravenous glucose infusion on metabolism of portal-drained viscera in sheep fed a cereal straw-based diet. Journal of Animal Science 73: 21462155.CrossRefGoogle ScholarPubMed
Baldwin, R. L. 1995. Modeling ruminant digestion and metabolism. Chapman and Hall, London.Google Scholar
Baldwin, R. L., France, J. and Gill, M. 1987. Metabolism of the lactating cow. I. Animal elements of a mechanistic model. Journal of Dairy Research 54: 77105.CrossRefGoogle ScholarPubMed
Baldwin, R. L. and McLeod, K. R. 2000. Effects of diet forage: concentrate ratio and metabolizable energy intake on isolated rumen epithelial cell metabolism in vitro. Journal of Animal Science 78: 771783.CrossRefGoogle ScholarPubMed
Bannink, A., Kogut, J., Dijkstra, J., France, J., Tamminga, S. and Vuuren, A. M. van. 2000. Modelling production and portal appearance of volatile fatty acids in dairy cows. In Modelling nutrient utilization in farm animals(ed. McNamara, J. P. France, J. and Beever, D. E.), pp. 87102. CABI Publishing, Wallingford.CrossRefGoogle Scholar
Bannink, A., Visser de, H., Klop, A., Dijkstra, J. and France, J. 1997. Causes of inaccurate prediction of volatile fatty acids by simulation models of rumen function in lactating cows. Journal of Theoretical Biology 189: 353366.CrossRefGoogle ScholarPubMed
Bauer, M. L., Harmon, D. L., Bohnert, D. W., Branco, A. F. and Huntington, G. B. 2001a. Influence of alpha-linked glucose on sodium-glucose cotransport activity along the small intestine in cattle. Journal of Animal Science 79: 19171924.CrossRefGoogle ScholarPubMed
Bauer, M. L., Harmon, D. L., McLeod, K. R. and Huntington, G. B. 1995. Adaptation to small intestinal starch assimilation and glucose transport in ruminants. Journal of Animal Science 73: 18281838.CrossRefGoogle ScholarPubMed
Bauer, M. L., Harmon, D. L., McLeod, K. R. and Huntington, G. B. 2001b. Influence of alpha-linked glucose on jejunal sodium-glucose co-transport activity in ruminants. Comparative Biochemistry and Physiology, Part A 129: 577583.CrossRefGoogle ScholarPubMed
Bauman, D. E., Davis, C. L. and Bucholtz, H. F. 1971. Propionate production in the rumen of cows fed either a control or high-grain, low-.fiber diet. Journal of Dairy Science 54: 12821287.CrossRefGoogle ScholarPubMed
Beitz, D. C. 1993. Lipid metabolism. In Dukes’ physiology of domestic animals(ed. Swenson, M. J. and Reece, W. O.), pp. 453472. Cornell University Press, Ithaca.Google Scholar
Bequette, B. J., Hanigan, M. D., Calder, A. G., Reynolds, C. K., Lobley, G. E. and MacRae, J. C. 2000. Amino acid exchange by the mammary gland of lactating goats when histidine limits milk production. Journal of Dairy Science 83: 765775.CrossRefGoogle ScholarPubMed
Bequette, B. J., Hanigan, M. D. and Lapierre, H. 2003. Mammary uptake and metabolism of amino acids by lactating ruminants. In Amino acids in farm animal nutrition(ed. D'Mello, J. P. F.), pp. 347365. CAB International, Wallingford.CrossRefGoogle Scholar
Berthiaume, R., Dubreuil, P., Stevenson, M., McBride, B. W. and Lapierre, H. 2001. Intestinal disappearance and mesenteric and portal appearance of amino acids in dairy cows fed ruminallyprotected methionine. Journal of Dairy Science 84: 194203.CrossRefGoogle Scholar
Bremmer, D. R., Trower, S. L., Bertics, S. J., Besong, S. A., Bernabucci, U. and Grummer, R. R. 2000. Etiology of fatty liver in dairy cattle: effects of nutritional and hormonal status on hepatic microsomal triglyceride transfer protein. Journal of Dairy Science 83: 22392251.CrossRefGoogle ScholarPubMed
Brockman, R. P., Bergman, E. N., Joo, P. K. and Manns, J. G. 1975. Effects of glucagon and insulin on net hepatic metabolism of glucose precursors in sheep. American Journal of Physiology 229: 13441349.CrossRefGoogle ScholarPubMed
Danfaer, A. 1990. A dynamic model of nutrient digestion and metabolism in lactating dairy cows. National Institute of Animal Science, Denmark.Google Scholar
Davis, C. L. 1967. Acetate production in the rumen of cows fed either control or low-fiber, high-grain diets. Journal of Dairy Science 50: 16211625.CrossRefGoogle ScholarPubMed
Dijkstra, J., Boer, H., Bruchem, J. van, Bruining, M. and Tamminga, S. 1993. Absorption of volatile fatty acids from the rumen of lactating dairy cows as in.uenced by volatile fatty acid concentration, pH and rumen liquid volume. British Journal of Nutrition 69: 385396.CrossRefGoogle Scholar
Doepel, L., Pacheco, D., Kennelly, J. J., Hanigan, M. D., Lopez, I. F. and Lapierre, H. 2004. Milk protein synthesis as a function of amino acid supply. Journal of Dairy Science 87: 12791297 (abstr. ).CrossRefGoogle ScholarPubMed
Egan, A. R., MacRae, J. C. and Lamb, C. S. 1983. Threonine metabolism in sheep. I. Threonine catabolism and gluconeogenesis in mature Blackface wethers given poor quality hill herbage. British Journal of Nutrition 49: 373383.CrossRefGoogle ScholarPubMed
Esdale, W. J., Broderick, G. A. and Satter, L. D. 1968. Measurement of ruminal volatile fatty acid production from alfalfa hay or corn silage rations using a continuous infusion isotope dilution technique. Journal of Dairy Science 51: 18231830.CrossRefGoogle Scholar
France, J., Hanigan, M. D., Reynolds, C. K., Dijkstra, J., Crompton, L. A., Maas, J. A., Bequette, B. J., Metcalf, J. A., Lobley, G. E., MacRae, J. C. and Beever, D. E. 1999. An isotope dilution model for partitioning leucine uptake by the liver of the lactating dairy cow. Journal of Theoretical Biology 198: 121133.CrossRefGoogle ScholarPubMed
Freetly, H. C. and Ferrell, C. L. 1998. Net flux of glucose, lactate, volatile fatty acids, and nitrogen metabolites across the portaldrained viscera and liver of pregnant ewes. Journal of Animal Science 76: 31333145.CrossRefGoogle ScholarPubMed
Freetly, H. C. and Ferrell, C. L. 2000. Net flux of nonesterified fatty acids, cholesterol, triacylglycerol, and glycerol across the portal-drained viscera and liver of pregnant ewes. Journal of Animal Science 78: 13801388.CrossRefGoogle ScholarPubMed
Freetly, H. C., Knapp, J. R., Calvert, C. C. and Baldwin, R. L. 1993. Development of a mechanistic model of liver metabolism in the lactating cow. Agricultural Systems 41: 157195.CrossRefGoogle Scholar
Hanigan, M. D., Cant, J. P., Weakley, D. C. and Beckett, J. L. 1998a. An evaluation of postabsorptive protein and amino acid metabolism in the lactating dairy cow. Journal of Dairy Science 81: 33853401.CrossRefGoogle Scholar
Hanigan, M. D., Crompton, L. A., Reynolds, C. K., Wray-Cahen, D., Lomax, M. A. and France, J. 2004a. An integrative model of amino acid metabolism in the liver of the lactating dairy cow. Journal of Theoretical Biology In press.CrossRefGoogle ScholarPubMed
Hanigan, M. D., France, J., Wray-Cahen, D., Beever, D. E., Lobley, G. E., Reutzel, L. and Smith, N. E. 1998b. Alternative models for analyses of liver and mammary transorgan metabolite extraction data. British Journal of Nutrition 79: 6378.CrossRefGoogle ScholarPubMed
Hanigan, M. D., Reynolds, C. K., Humphries, D. J., Lupoli, B. and Sutton, J. D. 2004b. A model of net amino acid absorption and utilization by the portal-drained viscera of the lactating dairy cow. Journal of Dairy Science In press.CrossRefGoogle Scholar
Hanigan, M. D., Weakley, D. C., Standaert, F. E. and Reutzel, L. R. 2002. Evaluation and refinement of ruminal volatile fatty acid absorption equations in dynamic, metabolic model of the lactating dairy cow. Journal of Dairy Science 85: 402 (abstr.).Google Scholar
Harper, A. E. 1959. Sequence in which the amino acids of casein become limiting for the growth of the rat. Journal of Nutrition 67: 109122.CrossRefGoogle ScholarPubMed
Huntington, G. B. 1990. Energy metabolism in the digestive tract and liver of cattle: in.uence of physiological state and nutrition. Reproduction, Nutrition, Development 30: 3547.CrossRefGoogle Scholar
Kohn, R. A., Boston, R. and Boston, R. C. 2000. The role of thermodynamics in controlling rumen metabolism. In Modelling nutrient utilization in farm animals(ed. McNamara, J. P. France, J. and Beever, D. E.), pp. 1124. CABI Publishing, Wallingford.CrossRefGoogle Scholar
Kohn, R. A., Boston, R. C., Ferguson, J. D. and Chalupa, W. 1994. The integration and comparison of dairy cow models. Proceedings of the fourth international workshop on modeling nutrition, pp. 117128.Google Scholar
Krehbiel, C. R., Britton, R. A., Harmon, D. L., Peters, J. P., Stock, R. A. and Grotjan, H. E. 1996. Effects of varying levels of duodenal or midjejunal glucose and 2 deoxyglucose infusion on small intestinal disappearance and net portal glucose flux in steers. Journal of Animal Science 74: 693700.CrossRefGoogle ScholarPubMed
Kreikemeier, K. K. and Harmon, D. L. 1995. Abomasal glucose, maize starch and maize dextrin infusions in cattle: small-intestinal disappearance, net portal glucose flux and ileal oligosaccharide flow. British Journal of Nutrition 73: 763772.CrossRefGoogle ScholarPubMed
Kreikemeier, K. K., Harmon, D. L., Brandt, R. T. Jr, Avery, T. B. and Johnson, D. E. 1991. Small intestinal starch digestion in steers: effect of various levels of abomasal glucose, corn starch and corn dextrin infusion on small intestinal disappearance and net glucose absorption. Journal of Animal Science 69: 328338.CrossRefGoogle ScholarPubMed
Kristensen, N. B. 2005. Splanchnic metabolism of volatile fatty acids in the dairy cow. Animal Science 80: 310.CrossRefGoogle Scholar
Kristensen, N. B., Danfaer, A., Tetens, V. and Agergaard, N. 1996. Portal recovery of intraruminally infused short-chain fatty acids in sheep. Acta Agriculturæ Scandinavica, Section A, Animal Science 46: 2638.Google Scholar
Kristensen, N. B., Gabel, G., Pierzynowski, S. G. and Danfaer, A. 2000. Portal recovery of short-chain fatty acids infused into the temporarily-isolated and washed reticulo-rumen of sheep. British Journal of Nutrition 84: 477482.CrossRefGoogle ScholarPubMed
Lapierre, H., Berthiaume, R., Raggio, G., Thivierge, M. C., Doepel, L., Pacheco, D., Dubreuil, P. and Lobley, G. E. 2005. The route of absorbed nitrogen into milk protein. Animal Science 80: 1122.CrossRefGoogle Scholar
Lebzien, P., Rohr, K. and Oslage, H. J. 1981. [Dependence of rumen fatty acid production on the composition of rations.] Archiv für Tierernährung 31: 685696.CrossRefGoogle ScholarPubMed
MacRae, J. C., Bruce, L. A., Brown, D. S. and Calder, A. G. 1997. Amino acid use by the gastrointestinal tract of sheep given lucerne forage. American Journal of Physiology 273: G1200–G1207.Google ScholarPubMed
MacRae, J. C. and Egan, A. R. 1983. Threonine metabolism in sheep. 2. Threonine catabolism and gluconeogenesis in pregnant ewes. British Journal of Nutrition 49: 385393.CrossRefGoogle ScholarPubMed
Murphy, M. R., Baldwin, R. L. and Koong, L. J. 1982. Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. Journal of Animal Science 55: 411421.CrossRefGoogle ScholarPubMed
National Research Council. 1984. Nutrient requirements of beef cattle, sixth edition. National Academy Press, Washington, DC.Google Scholar
National Research Council. 1985. Ruminant nitrogen usage. National Academy Press, Washington, DC.Google Scholar
National Research Council. 1989. Nutrient requirements of dairy cattle, sixth edition. National Academy Press, Washington, DC.Google Scholar
National Research Council. 2001. Nutrient requirements of dairy cattle, seventh revised edition. National Academy Press, Washington, DC.Google Scholar
Noziere, P., Remond, D., Bernard, L. and Doreau, M. 2000. Effect of underfeeding on metabolism of portal-drained viscera in ewes. British Journal of Nutrition 84: 821828.CrossRefGoogle ScholarPubMed
Overton, T. R., Drackley, J. K., Ottemann Abbamonte, C. J., Beaulieu, A. D., Emmert, L. S. and Clark, J. H. 1999. Substrate utilization for hepatic gluconeogenesis is altered by increased glucose demand in ruminants. Journal of Animal Science 77: 19401951.CrossRefGoogle ScholarPubMed
Piccioli, Cappelli F., Seal, C. J. and Parker, D. S. 1997. Glucose and [C-13]leucine metabolism by the portal-drained viscera of sheep fed on dried grass with acute intravenous and intraduodenal infusions of glucose. British Journal of Nutrition 78: 931946.Google Scholar
Reynolds, C. K., Aikman, P. C., Lupoli, B., Humphries, D. J. and Beever, D. E. 2003. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. Journal of Dairy Science 86: 12011217.CrossRefGoogle ScholarPubMed
Reynolds, C. K., Harmon, D. L., Prior, R. L. and Tyrrell, H. F. 1994. Effects of mesenteric vein L-alanine infusion on liver metabolism of organic acids by beef heifers fed diets differing in forage: concentrate ratio. Journal of Animal Science 72: 31963206.CrossRefGoogle ScholarPubMed
Reynolds, C. K., Humphries, D. J., Cammell, S. B., Benson, J., Sutton, J. D. and Beever, D. E. 1998. Effects of abomasal wheat starch infusion on splanchnic metabolism and energy balance of lactating dairy cows. In Energy metabolism of farm animals, proceedings of the 14th symposium on energy metabolism(ed. McCracken, J. Unsworth, E. F. and Wylie, A. R. G.), pp. 3942. CAB International, Wallingford, Oxon.Google Scholar
Reynolds, C. K., Huntington, G. B., Tyrrell, H. F. and Reynolds, P. J. 1988a. Net metabolism of volatile fatty acids, D-betahydroxybutyrate, nonesteri.ed fatty acids, and blood gasses by portal-drained viscera and liver of lactating Holstein cows. Journal of Dairy Science 71: 23952405.CrossRefGoogle Scholar
Reynolds, C. K., Huntington, G. B., Tyrrell, H. F. and Reynolds, P. J. 1988b. Net portal-drained visceral and hepatic metabolism of glucose, L- lactate, and nitrogenous compounds in lactating Holstein cows. Journal of Dairy Science 71: 18031812.CrossRefGoogle ScholarPubMed
Seal, C. J., Parker, D. S. and Avery, P. J. 1992. The effect of forage and forage-concentrate diets on rumen fermentation and metabolism of nutrients by the mesenteric- and portal-drained viscera in growing steers. British Journal of Nutrition 67: 355370.CrossRefGoogle ScholarPubMed
Seal, C. J. and Reynolds, C. K. 1993. Nutritional implications of gastrointestinal and liver metabolism in ruminants. Nutrition Research Reviews 6: 185208.CrossRefGoogle ScholarPubMed
Siciliano-Jones, J. and Murphy, M. R. 1989. Production of volatile fatty acids in the rumen and cecum-colon of steers as affected by forage: concentrate and forage physical form. Journal of Dairy Science 72: 485492.CrossRefGoogle ScholarPubMed
Sutton, J. D., Dhanoa, M. S., Morant, S. V., France, J., Napper, D. J. and Schuller, E. 2003. Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets. Journal of Dairy Science 86: 36203633.CrossRefGoogle ScholarPubMed
Tagari, H. and Bergman, E. N. 1978. Intestinal disappearance and portal blood appearance of amino acids in sheep. Journal of Nutrition 108: 790803.CrossRefGoogle ScholarPubMed
Tyrrell, H. F., Moe, P. W. and Flatt, W. P. 1970. In.uence of excess protein intake on energy metabolism of the dairy cow. European Association for Animal Production publicationno. 16, pp. 6871.Google Scholar
Waghorn, G. C. 1982. Modelling analyses of bovine mammary and liver metabolism. University of California, Davis, CA.Google Scholar
Weekes, T. E. C. and Webster, J. F. 1975. Metabolism of propionate in the tissues of the sheep gut. British Journal of Nutrition 33: 425438.CrossRefGoogle Scholar
Whitelaw, F. G., Milne, J. S., Ørskov, E. R. and Smith, J. S. 1986. The nitrogen and energy metabolism of lactating cows givenabomasal infusions of casein. British Journal of Nutrition 55: 537556.CrossRefGoogle ScholarPubMed
Wiltrout, D. W. and Satter, L. D. 1972. Contribution of propionate to glucose synthesis in the lactating and nonlactating cow. Journal of Dairy Science 55: 307317.CrossRefGoogle ScholarPubMed
Yu, F., Bruce, L. A., Calder, A. G., Milne, E., Coop, R. L., Jackson, F., Horgan, G. W. and MacRae, J. C. 2000. Subclinicalinfection with the nematode Trichostrongylus colubriformis increases gastrointestinal tract leucine metabolism and reduces availability of leucine for other tissues. Journal of Animal Science 78: 380390.CrossRefGoogle ScholarPubMed