Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T14:59:03.078Z Has data issue: false hasContentIssue false

Qualitative requirement for B vitamins in diets for the gilthead seabream (Sparus aurata L.)

Published online by Cambridge University Press:  02 September 2010

P. C. Morris
Affiliation:
Fish Nutrition Unit, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA
S. J. Davies
Affiliation:
Fish Nutrition Unit, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA
D. M. Lowe
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, Devon PL1 2PB
Get access

Abstract

Semi-purified diets incorporating 495·4 g/kg crude protein and 72·0 g/kg oil, were used to identify the qualitative requirement of Spams aurata juveniles for thiamin, riboflavin, pyridoxine, niacin and pantothenic acid. Deficiency of these vitamins was associated with poor performance in terms of growth, food efficiency and apparent net protein utilization. All dietary vitamin deficiencies resulted in elevated moisture and a lowering of the lipid content of the carcass. In addition to increased mortality among the fish fed deficient diets, a small number of externally visible changes were observed including food refusal, anorexia and changes of skin colour. At the haematological level, all cases of vitamin deficiency were associated with significant reductions in haematocrit. In general, histological examination revealed that the pancreas of vitamin-deficient animals became atrophic with an accumulation of pigmented granules around this organ while additionally, the normal homogeneity of the liver parenchyma was lost.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agius, C. and Roberts, R. J. 1981. Effects of starvation on the melano-macrophage centres of fish. journal of Fish Biology 19:161169.CrossRefGoogle Scholar
Agrawal, N. K. and Mahajan, C. L. 1983. Haematological and haematopoietic studies in pyridoxine deficient fish, Channa pimctatus Bloch. journal of Fish Biology 22:91103.CrossRefGoogle Scholar
Andrews, J. W. and Murai, T. 1978. Dietary niacin requirements for channel catfish. journal of Nutrition 108:15081511.CrossRefGoogle ScholarPubMed
Andrews, J. W. and Murai, T. 1979. Pyridoxine requirements of channel catfish. journal of Nutrition 109:533537.CrossRefGoogle ScholarPubMed
Aoe, H., Masuda, I., Saito, T. and Komo, A. 1967. Water-soluble vitamin requirements of carp. I. Requirement for vitamin B2. Bulletin of the Japanese Society of Scientific Fisheries 33:355360.CrossRefGoogle Scholar
Association of Official Analytical Chemists. 1990. Official methods of analysis. 15th ed. (ed. Herlich, K.). Association of Official Analytical Chemists, Arlington, Virginia, USA.Google Scholar
Baker, R. T. M. and Davies, S. J. 1995. The effect of pyridoxine supplementation on dietary protein utilization in gilthead seabream fry. Animal Science 60:157162.CrossRefGoogle Scholar
Bancroft, J. D. and Stevens, A. 1975. Histological stains and their diagnostic uses. Churchill Livingstone, England.Google Scholar
Bender, D. A. 1992. Nutritional biochemistry of the vitamins. Cambridge University Press.Google Scholar
Butthep, C., Sitasit, P. and Boonyaratpalin, M. 1983. Water-soluble vitamins essential for the growth of Clarias. In Finfish nutrition in Asia. Proceedings of the Asian finfish nutrition workshop, Singapore, (ed. Cho, C. Y., Cowey, C. B. and Watanabe, T.), pp. 118129. IDRC, Ottawa, Canada.Google Scholar
Chavez de Martinez, M. C., Escobar, B. L. and Olvera-Novoa, M. A. 1990. The requirement of Cichlasoma urophthalmus (Giinther) fry for pantothenic acid and the pathological signs of deficiency. Aquaculture and Fisheries Management 21:145156.Google Scholar
Duerdan, J. M. and Bates, CJ. 1985. Effect of riboflavin deficiency on lipid metabolism of liver and brown adipose tissue of suckling rat pups. British Journal of Nutrition 53:107115.CrossRefGoogle Scholar
Duncan, D. 1955. Multiple range tests and multiple F tests. Biometrics 11:142.CrossRefGoogle Scholar
Ellis, A. E., Roberts, R. J. and Tytler, P. 1989. The anatomy and physiology of teleosts. In Fish Pathology. 2nd ed. (ed. Roberts, R. J.), pp.1352. Bailliere Tindall, London.Google Scholar
Halver, J. E. 1957. Nutrition of salmonid fishes. III. Water-soluble vitamin requirements of chinook salmon. Journal of Nutrition 62:225243.CrossRefGoogle ScholarPubMed
Halver, J. E. 1989. The vitamins. In Fish Nutrition, 2nd ed. (ed. Halver, J. E.), pp.31109. Academic Press, London.Google Scholar
Hardy, R. W., Casillas, E. and Masumoto, T. 1987. Determination of vitamin B6 deficiency in rainbow trout (Salmo gairdneri) by liver enzyme assay and HPLC analysis. Canadian Journal of Fisheries and Aquatic Science 44:219222.CrossRefGoogle Scholar
Karges, R. G. and Woodward, B. 1984. Development of lamellar epithelial hyperplasia in gills of pantothenic acid deficient rainbow trout (Salmo gairdneri). Journal of Fish Biology 25:5762.CrossRefGoogle Scholar
Kissil, G. W. 1981. Known nutritional requirements of the gilthead seabream (Sparus aurata) in culture. European Mariculture Society, special publication no. 6, pp.4955.Google Scholar
Kissil, G. W., Cowey, C. B., Adron, J. W. and Richards, R. H. 1981. Pyridoxine requirements of the gilthead seabream, Sparus aurata. Aquaculture 23:243255.CrossRefGoogle Scholar
Kitamura, S., Suwa, T., Ohara, S. and Nakagawa, K. 1967. Studies on vitamin requirements of rainbow trout. II. The deficiency symptoms of fourteen kinds of vitamin. Bulletin of the Japanese Society of Scientific Fisheries 33:11201125.CrossRefGoogle Scholar
Lim, C., Leamaster, B. and Brock, J. S. 1993. Riboflavin requirement of red hybrid tilapia grown in seawater. In Fish nutrition in practice (ed. Kaushik, S. J. and Luquet, P.), fourth international symposium on fish nutrition and feeding, Biarritz, France, 1991, pp.743752. INRA, Paris.Google Scholar
Lowe, D. M. and Clarke, K. R. 1989. Contaminant induced changes in the structure of the digestive epithelium of Mytilus edulis. Aquatic Toxicology 15:345358.CrossRefGoogle Scholar
Masumoto, T., Hardy, R. W. and Stickney, R. R. 1993. Gill lipid metabolism in pantothenic acid-deficient rainbow trout (Oncorhynchus mykiss). In Fish nutrition in practice (ed. Kaushik, S. J. and Luquet, P.), fourth international symposium on fish nutrition and feeding, Biarritz, France, 1991, pp.247256. INRA, Paris.Google Scholar
Micale, V. and Perdichizzi, F. 1990. A quantitative and histochemical study on melano-macrophage centres in the spleen of the teleost fish Diplodus annularis L. Journal of Fish Biology 37:191197.CrossRefGoogle Scholar
Morito, C. L. H., Conrad, D. H. and Hilton, J. W. 1986. The thiamin deficiency signs and requirement of rainbow trout (Salmo gairdneri, Richardson). Fish Physiology and Biochemistry 1:93104.CrossRefGoogle ScholarPubMed
Morris, P. C. 1994. The water-soluble vitamin nutritio n of the gilthead seabream, Sparus aurata L. Ph.D. thesis. University of Plymouth.Google Scholar
Murai, T. and Andrews, J. W. 1978a. Riboflavin requirement of channel catfish fingerlings. Journal of Nutrition 108:15121517.CrossRefGoogle ScholarPubMed
Murai, T. and Andrews, J. W. 1978b. Thiamin requirement of channel catfish fingerlings. Journal of Nutrition 108:176180.CrossRefGoogle ScholarPubMed
Ogino, C. 1967. The B vitamin requirements of carp. II. Requirements for riboflavin and pantothenic acid. Bulletin of the Japanese Society of Scientific Fisheries 33:351354.CrossRefGoogle Scholar
Poston, H.A. and Page, J. W. 1982. Gross an d histological signs of dietary deficiencies of biotin and pantothenic acid in lake trout (Salvelinus namaycush). Cornell Veterinarian 72:242261.Google Scholar
Roem, A. J., Stickney, A. A. and Kohler, C. C. 1991. Dietary pantothenic acid requirement of the blue tilapia. Progressive Fish-Culturist 53:216219.2.3.CO;2>CrossRefGoogle Scholar
Shearer, K. D. 1994. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture 119:6388.CrossRefGoogle Scholar
Smith, C. E., Brin, M. and Halver, J. E. 1974. Biochemical, physiological and pathological changes in pyridoxine deficient rainbow trout (Salmo gairdneri). Journal of the Fisheries Research Board of Canada 31:18931898.CrossRefGoogle Scholar
Soliman, A. K. and Wilson, R. P. 1992. Water soluble vitamin requirements of tilapia. 2. Riboflavin requirement of blue tilapia, Oreochromis aureus. Aquaculture 104:309314.CrossRefGoogle Scholar
Steffens, W. 1989. Principles offish nutrition. Ellis Harwood Ltd, Chichester.Google Scholar
Tacon, A. G. J. 1991. Vitamin nutrition in shrimp and fish. Proceedings of the aquaculture feed processing and nutrition workshop (ed. Akiyama, D. M. and Tan, R. K. H.) Thailand and Indonesia, pp.1041.Google Scholar
Tunison, A. V., Brockway, D. R., Schaffer, H. B., Maxwell, J. M., Dorr, A. L. and McCay, C. M. 1944. The nutrition of trout. State Conservation Department, Cortland Hatchery, New York, report no. 13. Fisheries research bulletin 6.Google Scholar
Vel, M. S., Sampath, K. and Pandian, T. J. 1990. Dosage effects of pyridoxine, folacin and ascorbic acid on the blood parameters of Cyprinus carpio. Proceedings of the second Asian fisheries forum, Tokyo, Japan, 1989 (ed. Hirano, R. and Hanyu, I.), pp. 263266.Google Scholar
Wanakowat, J., Boonyaratpalin, M., Pimoljinda, A. and Assavaaree, M. 1989. Vitamin B6 requirement of juvenile Seabass (Lates calcarifer). In The current status offish nutrition in aquaculture (ed. Takeda, M. and Watanabe, T.), proceedings of the third international symposium on feeding and nutrition in fish, Toba, Japan, pp.141147.Google Scholar
Woodward, B. 1984. Symptoms of severe riboflavin deficiency without ocular opacity in rainbow trout (Salmo gairdneri). Aquaculture 37:275281.CrossRefGoogle Scholar