Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:16:44.925Z Has data issue: false hasContentIssue false

Influence of sex on cellularity and lipogenic enzymes of Spanish lamb breeds (Lacha and Rasa Aragonesa)

Published online by Cambridge University Press:  02 September 2010

J. A. Mendizabal
Affiliation:
ETSIA, Universidad Pùblica de Navarra, Campus de Arrosadìa, 31006 Pamplona, Spain
B. Soret
Affiliation:
ETSIA, Universidad Pùblica de Navarra, Campus de Arrosadìa, 31006 Pamplona, Spain
A. Purroy
Affiliation:
ETSIA, Universidad Pùblica de Navarra, Campus de Arrosadìa, 31006 Pamplona, Spain
A. Arana
Affiliation:
ETSIA, Universidad Pùblica de Navarra, Campus de Arrosadìa, 31006 Pamplona, Spain
A. Horcada
Affiliation:
ETSIA, Universidad Pùblica de Navarra, Campus de Arrosadìa, 31006 Pamplona, Spain
Get access

Abstract

The effect of sex on the size and number of adipocytes and on the lipogenic enzyme activity in different fat depots in Lacha (L) and Rasa Aragonesa (RA) lambs was studied. Male and female L lambs were fed on ewe milk and were slaughtered at 25 and 24 days of age corresponding to 11·4 and 10·9 kg live weight (UN), respectively. Male and female RA lambs were weaned at 58 days (16·0 kg LW) and were then given concentrates and barley straw until slaughtered at 89 and 91 days of age corresponding to 24·5 and 23·1 kg LW, respectively. A number of parameters were studied in omental (OM), mesenteric (MES) and kidney knob and channel fat (KKCF) depots including the amount of fat, the number and size of adipocytes and the activity of the following enzymes: glycerol 3-phosphate dehydrogenase (G3PDH), fatty acid synthetase (FAS), glucose 6-phosphate dehydrogenase (G6PDH) and NADPmalate dehydrogenase (MD). In subcutaneous (SC) and intermuscular (IM) depots, all the former parameters except the adipocyte number were studied. Females of both breeds had higher amounts of adipose tissue than males in the internal fat depots (P < 0·05) as well as larger adipocytes, mainly in the KKCF (P < 0·05 andP < 0·001 for L and RA lambs, respectively) and OM (P < 0·05 in the RA lambs) depots. There were no differences between sexes in the number of adipocytes. The activity of the G3PDH enzyme was higher in females than in males in OM and SC depots (P < 0·01) in L lambs, and in KKCF, IM (P < 0·05), OM and MES (P < 0·001) depots in RA lambs. Thus, the sex effect on adiposity in both breeds studied involved a greater fattening of the females which was consistent with a greater hypertrophy and a higher G3PDH activity.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. E. 1976. Cellularity of adipose tissue in meat animals. Federation Proceedings 35: 23022307.Google ScholarPubMed
Bènèvent, M. 1971. Croissance relative ponderale postèatale dans les deux sexes, des principaux tissus et organes de l'agneau Merinos d'Arles. Annales de Biologic Animate, Biochimie et Biophysique 11: 539.CrossRefGoogle Scholar
, Biocom. 1992. Photometric image analysis system. Les Ulis Cedex, France.Google Scholar
Broad, T. E., Davies, A. S. and Tan, G. Y. 1980. Pre and postnatal study of the carcass growth of sheep. 2. The cellular growth of adipose tissues. Animal Production 31: 7379.Google Scholar
Esteban, C. and Tejòn, D. 1980. Catàlogo de razas autòctonas españolas. I. Especies ovina y caprina. Ministerio de Agricultura, Pesca y Alimentaciòn, Madrid.Google Scholar
Etherton, T. D., Thompson, E. H. and Allen, C. E. 1977. Improved techniques for studies of adipocyte cellularity and metabolism. Journal ofLipid Research 18: 552557.Google ScholarPubMed
Flint, D. J. and Vernon, R. G. 1993. Hormones and adipose growth. In The endocrinology of growth, development and metabolism in vertebrates (ed. Scheibman, M. P., Scans, C. G., Pand, P. K. T.), pp. 469494. Academy Press, Orlando.CrossRefGoogle Scholar
Fourie, P. D., Kirton, A. H. and Jury, K. E. 1970. Growth and development of sheep. 2. Effect of breed and sex on the growth and carcass composition of the Southdown and Romney and their cross. New Zealand journal of Agricultural Research 13: 753770.CrossRefGoogle Scholar
Glock, G. E. and McLean, P. 1953. Further studies on the properties and assay of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of rat liver. Biochemical Journal 55: 400408.CrossRefGoogle ScholarPubMed
Halestrap, A. P. and Denton, R. M. 1973. Insulin and the regulation of adipose tissue acetyl-coenzyme A carboxylase. Biochemical journal 132: 509517.CrossRefGoogle ScholarPubMed
Hammond, J. 1932. Groxvth and development of mutton qualities in the sheep. Oliver and Boyd, Edinburgh.Google Scholar
Harvey, W. R. 1987. User's guide for LSMLMW PC-1 version. Illinois.Google Scholar
Hirsch, J. and Gallian, E. 1968. Methods for the determination of adipose cell size in man and animals. Journal ofLipid Research 9: 110119.Google Scholar
Hood, R. L. 1982. Relationships among growth, adipose cell size, and lipid metabolism in ruminant adipose tissue. Federation Proceedings 41: 25552561.Google ScholarPubMed
International Standards Organization. 1973. Determination of total fat content, ISO 1443-1973. In International standards for meat and meats products. International Organization for Standardization, Geneva.Google Scholar
Kellaway, R. C. 1973. The effects of plane of nutrition, genotype and sex on growth, body composition and wool production in grazing sheep. Journal of Agricultural Science, Cambridge 80: 1727.CrossRefGoogle Scholar
Kempster, A. J. 1980-1981. Fat partition and distribution in the carcasses of cattle, sheep and pigs: a review. Meat Science 5: 8398.CrossRefGoogle Scholar
Keys, A. and Brozek, J. 1953. Body fat in adult man. Physiological Reviews 33: 245325.CrossRefGoogle ScholarPubMed
Nougués, J. and Vèzinhet, A. 1977. Evolution, pendant la croissance de la cellularitè du tissu adipeux chez le lapin et l'agneau. Annales de Biologic Animate, Biochimie et Biophysique 17: 799806.CrossRefGoogle Scholar
Ochoa, S. 1955. In Methods in enzymology (ed. Colowick, S. P., Kaplan, N. O.), p. 735. Academic Press, New York.CrossRefGoogle Scholar
Sànchez, A. and Sànchez, M. C. 1986. Razas ovinas españolas. 2a ediciòn. Ministerio de Agricultura, Pesca y Alimentaciòn, Madrid.Google Scholar
Searle, T. W. and Griffiths, D. A. 1976. The body composition of growing sheep during milk feeding, and the effect on composition of weaning at various body weights. Journal of Agricultural Science, Cambridge 86: 483493.CrossRefGoogle Scholar
Shidu, K. S., Emery, R. S., Parr, A. F. and Merkel, R. A. 1973. Fat mobilising lipase in relation to fatness in lambs. Journal of Animal Science 36: 658662.Google Scholar
Thompson, J. M., Butterfield, R. M. and Reddacliff, K. J. 1988. Food intake, growth and body composition in Australian Merino sheep selected for high and low weaning weight. 5. Adipocyte volume and number in the dissected fat partitions. Animal Production 46: 395402.CrossRefGoogle Scholar
Truscott, T. G., Wood, J. D. and Denny, H. R. 1983. Fat deposition in Hereford and Friesian steers. 2. Cellular development. Journal of Agricultural Science, Cambridge 100: 271276.CrossRefGoogle Scholar
Vernon, R. G. 1986. The growth and metabolism of adipocytes. In Control and manipulation of animal growth (ed. Buttery, P. J., Haynes, N. B., Lindsay, D. B.), pp. 6783. Butterworths, London.CrossRefGoogle Scholar
Vèzinhet, A. and Prudħon, M. 1975. Evolution of various adipose deposits in growing rabbits and sheep. Animal Production 20: 363370.CrossRefGoogle Scholar
Wisse, L. S. and Green, H. 1979. Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in the adipose conversion of 3T3 cells. Journal of Biological Chemistry 254: 273275.CrossRefGoogle Scholar
Wood, J. D., McFie, H. J. H., Pomeroy, R. W. and Twinn, D. J. 1980. Carcass composition in four sheep breeds: the importance of type of breed and stage of maturity. Animal Production 30: 135152.Google Scholar