Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T17:38:52.810Z Has data issue: false hasContentIssue false

Inclusion of oat hulls in diets for young pigs based on cooked maize or cooked rice

Published online by Cambridge University Press:  09 March 2007

G. G. Mateos*
Affiliation:
Departamento de Producción Animal, Universidad Politécnica de Madrid, 28040, Madrid, Spain
F. Martín
Affiliation:
Departamento de Producción Animal, Universidad Politécnica de Madrid, 28040, Madrid, Spain
M. A. Latorre
Affiliation:
Departamento de Producción Animal, Universidad Politécnica de Madrid, 28040, Madrid, Spain
B. Vicente
Affiliation:
Departamento de Producción Animal, Universidad Politécnica de Madrid, 28040, Madrid, Spain
R. Lázaro
Affiliation:
Departamento de Producción Animal, Universidad Politécnica de Madrid, 28040, Madrid, Spain
Get access

Abstract

An experiment was conducted to investigate the influence of the main cereal (cooked maize or cooked rice) and the inclusion of cooked and expanded oat hulls (0, 20 or 40 g/kg) in the diet on total tract apparent nutrient digestibility (TTAD) and productive performance of piglets weaned at 21 days. Each of the six treatments was replicated eight times (five piglets penned together) and the trial lasted for 33 days. From 21 to 41 days of age piglets were given their respective experimental complex diets that contained 530 g/kg cooked cereal and from 41 to 54 days they received a common starter diet based on maize, barley and soya-bean meal. Growth promoters were not included in the diets. The TTAD was determined at 27 and 37 days of age and pig performance was measured at 31, 41 and 54 days of age. Nutrient digestibility increased with age ( P<0·001) and in general were higher for rice- than for maize-based diets ( P<0·001 for dry matter, organic matter and gross energy and P<0·05 for ether extract). From 21 to 41 days of age piglets given rice had higher food intake (FI, P<0·05) and average daily gain (ADG, P<0·01) than piglets given maize but food conversion ratio was not affected. The differences observed were maintained until the end of the trial. The inclusion of oat hulls in the diet did not affect TTAD of the nutrients but tended to reduce the incidence of diarrhoea from 21 to 41 days of age ( P<0·1). Oat hulls inclusion reduced FI and ADG in diets based on maize but had the opposite effect in diets based on rice, indicating that piglets might have a minimum requirement for dietary fibre. It is concluded that cooked rice is an ingredient of choice in pre-starter diets for weanling pigs. Also, the inclusion of moderate levels of fibre as oat hulls reduces the incidence of diarrhoea and might improve productive performance in low fibre diets.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleton, D. J., Rand, J. S., Priest, J., Sunvold, G. D. and Vickers, J. R. 2004. Dietary carbohydrate affects glucose concentrations, insulin secretion and food intake in overweight cats. Nutrition Research 24: 447467.CrossRefGoogle Scholar
Association of Official Analytical Chemists, 2000. Official methods of analysis, 17th edition. AOAC, Arlington, VA.Google Scholar
Bach Knudsen, K. E. 1997. Carbohydrate and lignin content of plant materials used in animal feeding. Animal Feed Science Technology 67: 319338.CrossRefGoogle Scholar
Beers-Schreurs, H. M. G. van and Bruininx, E. M. 2002. Nutritional management to prevent disorders in post-weaning pig health. In Nutrition and health of the gastrointestinal tract (ed. Blok, M. C., Vahl, H. A., de Lange, L., van de Braak, A. E., Hemke, G. and Hessing, M.), Wageningen Academic Publishers, The Netherlands, pp. 135158.Google Scholar
Bolduan, G., Jung, H., Schnable, E. and Schneider, R. 1988. Recent advances in the nutrition of weaner piglets. Pig News and Information 9: 381385.Google Scholar
Boletín Oficial del Estado. 1988. Real Decreto Español 223/88 sobre la protección de los animales utilizados para experimentación y otros fines científicos. Boletín Oficial del Estado 67: 85098511.Google Scholar
Bruininx, E. M., Schellingerhout, A. B., Binnendijk, G. P., Peet-Schwering, C. M., van der, , Schrama, J. W., Hartog, L. A., den, , Everts, H. and Beynen, A. C. 2004. Individually assessed creep food consumption by suckled piglets: influence on post-weaning food intake characteristics and indicators of gut structure and hind-gut fermentation. Animal Science 78: 6775.CrossRefGoogle Scholar
Choct, M. 2002. Non-starch polysaccharides: effect on nutritive value. In Poultry feedstuffs (ed. McNab, J. M. and Boorman, N. K.), pp. 221235. CABI Publishing, Wallingford.Google Scholar
Frank, G. R., Aherne, F. X. and Jensen, A. H. 1983. A study of the relationship between performance and dietary component digestibilities by swine fed different levels of dietary fiber. Journal of Animal Science 57: 645654.CrossRefGoogle ScholarPubMed
Fundación Española para el Desarrollo de la Nutrición Animal 2003. Normas FEDNA para la formulación de piensos compuestos (ed. de Blas, C., Mateos, G. G. and García, P.), FEDNA, Madrid.Google Scholar
Gill, B. P., Mellange, J. and Rooke, J. A. 2000. Growth performance and apparent nutrient digestibility in weaned piglets offered wheat-, barley- or sugar beet pulp-based diets supplemented with food enzymes. Animal Science 70: 107118.CrossRefGoogle Scholar
Hampson, D. J., Robertson, I. D., La, T., Oxberry, S. L. and Pethick, D. W. 2000. Influence of diet and vaccination on colonisation of pigs with the intestinal Spirochaete Brachyspira (Serpulina) pilosicoli. Veterinarian Microbiology 73: 7584.CrossRefGoogle ScholarPubMed
Kirwan, W. O., Smith, A. N., McConnel, A. A., Mitchell, W. D. and Eastwood, M. A. 1974. Action of different bran preparations on colonic functions. British Medicine 4: 187189.CrossRefGoogle Scholar
Lizardo, R., Peiniau, J. and Aumaître, A. 1997. Consequences of the inclusion of sugar beet pulp in diets for early weaned and growing pigs. Annales du Zootechnie 46: 281294.CrossRefGoogle Scholar
Longland, A. C., Carruthers, J. and Low, A. G. 1994. The ability of piglets 4 to 8 weeks old to digest and perform on diets containing two contrasting sources of non-starch polysaccharides. Animal Production 58: 405410.Google Scholar
López, E., Latorre, M. A., Valencia, D. G., Lázaro, R. and Mateos, G. G. 2003. Inclusion of oat hulls in diets for piglets based on native or cooked cereals. Journal of Animal Science 81: 47 (abstr.).Google Scholar
Low, A. G. 1993. Role of dietary fibre in pig diets. In Recent developments in pig nutrition 2 (ed. Cole, D. J. A., Haresign, W. and Garnsworthy, P. C.), pp. 137162. Nottingham University Press, Nottingham.Google Scholar
McDonald, D. E., Pethick, D. W., Mullan, B. P. and Hampson, D. J. 2001. Increasing the viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs. British Journal of Nutrition 86: 487498.CrossRefGoogle ScholarPubMed
McDonald, D. E., Pethick, D. W., Pluske, J. R. and Hampson, D. J. 1999. Adverse effects of soluble non-starch polysaccharide (guar gum) on piglet growth and experimental colibacillosis immediately after weaning. Research in Veterinary Science 67: 245250.CrossRefGoogle ScholarPubMed
Manthey, F. A., Hareland, G. A. and Huseby, D. J. 1999. Soluble and insoluble dietary fiber content and composition in oat. Cereal Chemistry 76: 417420.CrossRefGoogle Scholar
Mateos, G. G., Alcantarilla, A., Latorre, M. A., Lázaro, R., Gómez, E. Laso, N. 2001. Influence of type of cereal and level of fiber on performance of early-weaned piglets. Journal of Animal Science 79: 106107. (abstr.).Google Scholar
Medel, P., Salado, S., Blas, J. C., de Mateos, G. G. 1999. Processed cereals in diets for early-weaned piglets. Animal Feed Science and Technology 82: 145156.CrossRefGoogle Scholar
Medel, P., Baucells, F., Gracia, M. I., Blas, C., de Mateos, G. G. 2002. Processing of barley and enzyme supplementation in diets for young pigs. Animal Feed Science Technology 95: 113122.CrossRefGoogle Scholar
Medel, P., Latorre, M. A., De Blas, C., Lázaro, R. and Mateos, G. G. 2004. Heat processing of cereals in mash or pellet diets for young pigs. Animal Feed Science Technology 13: 127140.CrossRefGoogle Scholar
Mosenthin, R., Hambrecht, E. and Sauer, W. C. 1999. Utilisation of different fibres in piglet feeds. In Recent advances in animal nutrition (ed. Garnsworthy, P. C. and Wiseman, J.), pp. 227256. Nottingham University Press, Nottingham.Google Scholar
National Research Council 1998. Nutrient requirements of swine, 10th revised edition. National Academy Press, Washington DC.Google Scholar
Noblet, J., Le Goff, G. 2001. Effect of dietary fibre on the energy value of feeds for pigs. Animal Feed Science and Technology 91: 3552.CrossRefGoogle Scholar
Palmer, N. C. and Hulland, T. J. 1965. Factors predisposing to the development of coliform gastroenteritis in weaned pigs. Canadian Veterinary Journal 6: 310316.Google Scholar
Piao, X. S., Li, D., Han, I. K., Chen, Y., Lee, J. H., Wang, D. Y., Li, J. B. and Zhang, D. F. 2002. Evaluation of Chinese Brown rice as an alternative energy source in pig diets. Asian-Australasian Journal Animal Science 15: 8993.CrossRefGoogle Scholar
Pluske, J. R., Black, B., Pethick, D. W., Mullan, B. P. and Hampson, D. J. 2003. Effects of different sources and levels of dietary fibre in diets on performance, digesta characteristics and antibiotic treatment of pigs after weaning. Animal Feed Science Technology 107: 129142.CrossRefGoogle Scholar
Pluske, J. R., Hampson, D. J. and Williams, I. H. 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livestock Production Science 51: 215236.CrossRefGoogle Scholar
Pluske, J. R., Kim, J. C., McDonald, D. E., Pethick, D. W. and Hampson, D. J. 2001a. Non-starch polysaccharides in the diets of young weaned piglets. In The weaner pig: nutrition and management (ed. Varley, M. A. and Wiseman, J.), pp. 81112. CABI Publishing, Wallingford.Google Scholar
Pluske, J. R., McDonald, D. E., Pethick, D. W., Mullan, B. P. and Hampson, D. J. 2001b. Nutritional management of the gastrointestinal tract to reduce enteric diseases in pigs. Recent advances in animal nutrition in Australia 13: 127134.Google Scholar
Pluske, J. R., Siba, P. M., Pethick, D. W., Durmic, Z., Mullan, B. P. and Hampson, D. J. 1996. The incidence of swine dysentery in pigs can be reduced by feeding diets that limit the amount of fermentable substrate entering the large intestine. Journal of Nutrition 126: 29202933.Google ScholarPubMed
Sagum, R. and Arcot, J. 2000. Effect of domestic processing methods on the starch, non-starch polysaccharides and in vitro starch and protein digestibility of three varieties of rice with varying levels of amylose. Food Chemistry 70: 107111.CrossRefGoogle Scholar
Stanogias, G. and Pearce, G. R. 1985. The digestion of fibre by pigs 1. The effects of amount and type of fibre on apparent digestibility, nitrogen balance and rate of passage. British Journal of Nutrition 53: 513530.CrossRefGoogle ScholarPubMed
Statistical Analysis Systems Institute 1990. SAS user's guide: statistics. version 6, fourth edition. SAS Institute Inc., Cary, NC.Google Scholar
Sunvold, G. D. and Bouchard, G. F. 1998. The glycaemic response to dietary starch. In Advances in canine and feline nutrition, volume 2 (ed. G. A., Reinhart and D. P., Carey), pp. 123131. Orange Frazer Press, Wilmington, OH.Google Scholar
Vandeputte, G. E. and Delcour, J. A. 2004. From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydrate Polymers 58: 245266.CrossRefGoogle Scholar
Vicente, B., Valencia, D. G., Lázaro, R., Latorre, M. A. and Mateos, G. G. 2004. Use of rice in substitution of corn in diets for young pigs. Journal of Animal Science 82: 456 (abstr.).Google Scholar
Vogtmann, H. P., Frirter, P. and Prabuck, A. L. 1975. A new method of determining metabolizability of energy and digestibility of fatty acids in broiler diets. British Poultry Science 16: 531534.CrossRefGoogle Scholar
Whittemore, C. T. 2003. Nutrient requirements standards for pigs. British Society of Animal Science, Penicuik, Midlothian.Google Scholar
Witte, W., Jorsal, S. E., Roth, F. X., Kirchgessner, M., Göranson, L., Lange, S. and Pedersen, K. B. 2000. Future strategies with regard to the use of feed without antibiotic additives in pig production Pigs News Information 21: 27N32N.Google Scholar