Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T23:34:52.074Z Has data issue: false hasContentIssue false

Feeding value of pea (Pisum sativum, L.) 1. Chemical composition of different categories of pea

Published online by Cambridge University Press:  02 September 2010

D. Bastianelli
Affiliation:
Union Nationale Interprofessionnelle des Plantes riches en Protéines, 12 avenue George V, 75008 Paris, France
F. Grosjean
Affiliation:
Institut Technique des Céréales et Fourrages, 8 avenue du Président Wilson, 75116 Paris, France
C. Peyronnet
Affiliation:
Union Nationale Interprofessionnelle des Plantes riches en Protéines, 12 avenue George V, 75008 Paris, France
M. Duparque
Affiliation:
Groupement des Sélectionneurs de Pois, Domaine de Brunehaut, 80200 Mons, France
J. M. Régnier
Affiliation:
Union des Coopératives Agricoles d'Alimentation du Bétail, Chierry, 02400 Château-Thierry, France
Get access

Abstract

Lines of peas (no. = 213) grown in the same location were analysed for 1000 seed weight, protein, starch, fat, sugars, ashes and fibre content. Some 54 lines of peas out of the total 213 were grown in large amounts and analysed for the same criteria and also for amino acids, legumin, vicilin, lectins, trypsin inhibitor activity, carbohydrates, fatty acids, tannins, saponins. The lines have been arranged into four categories according to the shape, colour, weight, chemical composition and end uses of the seeds. Feed peas and garden peas are round and have similar composition in terms of protein, starch and fibre contents; they are tannin-free and have variable trypsin inhibitor activity. Coloured peas have also a round shape but differ from the feed and garden peas principally by tannins and also by lower starch, higher protein, higher fibre contents. Wrinkled peas differ from the feed and garden peas by lower starch, higher protein, higher fibre, higher lipid contents and their starch is characterized by a higher amylose/amylopectine ratio.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arentoft, A. M. and Sorensen, H. 1992. Alpha-galactosides and dietary fibre in relation to pea quality: methods of oligosaccharide analyses. Proceedings of the 1st European conference on grain legumes, Angers, France, p. 457.Google Scholar
Aufrère, J., Graviou, D., Demarquilly, C., Verite, R., Michalet-Doreau, B. and Chapoutot, P. 1989. Aliments concentres pour ruminants: prévision de la valeur PDI à partir d'une méthode enzymatique standardisée. INRA Productions Animales. 2: 249254.CrossRefGoogle Scholar
Bagheri, S. M. 1983. Dosage colorimétrique du phosphore phytique. Cahiers des techniques de I'INRA. 3: 3335.Google Scholar
Barrier-Guillot, B., Pala Teles, J. C., Métayer, J. P., Maupetit, P. and Gâtel, F. 1994. Disponibilité du phosphore du triticale et du pois chez le poulet de chair. Annales Valicentre. 4: 93104.Google Scholar
Boehringer Mannheim. 1980. Methods of enzymatic food analysis. Boehringer Mannheim, 6800 Mannheim 31, Germany.Google Scholar
Bond, D. A. and Due, G. 1993. Plant breeding as a means of reducing antinutritional factors in grain legumes. In Recent advances of research in antiniutritional factors in legume (ed. Poel, A. F. B. van der, Huisman, J. and Saini, H. S.), pp. 379396. Pudoc, Wageningen, The Netherlands.Google Scholar
Bran, N. 1991. Les tannins de la feverole (Vicia faba L.): diversite chimique et varietale. Ph.D. thesis, University Claude Bernard, Lyon, France.Google Scholar
Carré, B. and Brillouet, J. M. 1986. Yield and composition of cell walls residues isolated from various feedstuffs used for non-ruminant farm animals. Journal of the Science of Food and Agriculture. 37: 341351.CrossRefGoogle Scholar
Carré, B. and Brillouet, J. M. 1989. Determination of water-insoluble cell walls in feeds: interlaboratory study. Journal of the Association ofAnalytical Chemists. 72: 463467.Google ScholarPubMed
Cerning-Beroard, J. and Filiatre, A. 1976. A comparison of the carbohydrate composition of legume seed: horsebeans, peas and lupines. Cereal Chemistry. 53: 968978.Google Scholar
Commission of the European Community. 1971. Luff-Schoorl method. First directive CEC 71/250.Google Scholar
Commission of the European Community. 1972. Ewers method. Third directive CEC 72/199.Google Scholar
Commission of the European Community. 1972. Kjeldahl method. Third directive CEC 72/199.Google Scholar
Coxon, D. T. and Wright, D. J. 1985. Analysis of pea lipid content by gas chromatographic analysis and microgravimetric methods. Genotype variation in lipid content and fatty acid composition. Journal of the Science of Food and Agriculture. 36: 847856.CrossRefGoogle Scholar
Eeckhout, W. and de Paepe, M. 1994. Total phosphorus, phytate phosphorus and phytase activity in plant feedstuffs. Animal Feed Science and Technology. 47: 1929.CrossRefGoogle Scholar
Gatel, F. and Grosjean, F. 1990. Composition and nutritive value of peas for pigs: a review of European results. Livestock Production Science 26: 155175.CrossRefGoogle Scholar
Gâla, J., Buraczewska, L. and Grala, W. 1992. The chemical composition of different types and varieties of pea and the digestion of their protein in pigs. Journal of Animal and Feed Sciences. 1: 7179.Google Scholar
Goering, H. K. and Van Soest, P. J. 1970. Forage fiber analysis (apparatus, reagents, procedures and some applications). Agricultural handbook no. 379, ARS, USDA, Washington, DC.Google Scholar
Grosjean, F. 1985. Combining pea in animal feed. In The pea crop (ed. Hebblethwaite, P. D., Heath, M. C. and Dawkins, T. C. K.), pp. 453462. Butterworths, London.CrossRefGoogle Scholar
Grosjean, F., Bastianelli, D., Bourdillon, A., Cerneau, P., Jondreville, C. and Peyronnet, C. 1998. Feeding value of pea (Pisum sativum, L.). 2. Nutritional value in the pig. Animal Science 67: 621625.CrossRefGoogle Scholar
Grosjean, F., Bourdon, D., Isambert, P., Peyronnet, C. and Jondreville, C. 1992. Valeur alimentaire pour le pore charcutier de produits de décorticage du pois. Journées de la Recherche Porcine en France. 24: 173178.Google Scholar
Gueguen, J. and Barbot, J. 1988. Quantitative and qualitative variability of pea (Pisum sativum L.) protein composition. Journal of the Science of Food and Agriculture 42: 209224.CrossRefGoogle Scholar
Hamer, R. J., Oort, M. G. van, Mouwen, J. M. V. M. and Huisman, J. 1989. New developments in lectin analysis. In Recent advances of research in antinutritional factors in seeds (ed. Huisman, J., Poel, A. F. B. van der and Liener, I. E.), pp. 3033. Pudoc, Wageningen, The Netherlands.Google Scholar
Hlödversson, R. 1987. Comparison of the nutritional value of dark and white flowered cultivars of pea for growing-finishing pigs. Swedish Journal of Agricultural Research 17: 97101.Google Scholar
Institut National de la Recherche Agronomique. 1989. Alimentation des animaux monogastriques: pore, lapin, 2ème édition. INRA, Paris.Google Scholar
Jongbloed, A. W. and Kemme, P. A. 1990. Apparent digestible phosphorus in the feeding of pigs in relation to availability, requirement and environment. Netherlands Journal of Agricultural Science. 38: 567575.CrossRefGoogle Scholar
Landry, J. and Delhaye, S. 1993. The tryptophan content of wheat, maize and barley grain as a function of nitrogen content. Journal of Cereal Science. 18: 259266.CrossRefGoogle Scholar
Larsson, D. L., Gilles, H. A. and Jennes, R. 1953. Amperometric method for determining the sorption of iodine by starch. Analytical Chemistry. 25: 802806.CrossRefGoogle Scholar
Leterme, P. and Beckers, Y. 1989. Utilisation du pois proteagineux dans ralimentation des pores—revue bibliographique. 1. Composition chimique et repercussions nutritionnelles. Revue Agriculture. 42: 469480.Google Scholar
Metayer, J. P., Grosjean, F. and Castaing, J. 1993. Study of variability in French cereals. Animal Feed Science and Technology. 45: 87108.CrossRefGoogle Scholar
Mosse, J. and Huet, J. C. 1990. Amino acid composition and nutritional score for ten cereals and six legumes or oilseeds: causes and ranges of variations according to species and to seed nitrogen content. Science des Aliments. 10: 151173.Google Scholar
Pointillard, A. 1994. Phytates et phytases dans lialimentation des monogastriques. INRA Productions Animates. 7: 2939.CrossRefGoogle Scholar
Price, K. R., Curl, C. L. and Fenwick, G. R. 1986. The saponin content and sapogenol composition of the seed of 13 varieties of legumes. Journal of the Science of Food Agriculture. 37: 186191.CrossRefGoogle Scholar
Reichert, R. D. and MacKenzie, S. L. 1982. Composition of peas (Pisum sativum) varying widely in protein content. Journal of Agricultural and Food Chemistry 30: 312317.CrossRefGoogle Scholar
Sauveur, B. 1989. Phosphore phytique et phytases dans ralimentation. INRA Productions Animates. 2: 343351.CrossRefGoogle Scholar
Savage, G. P. and Deo, S. 1989. The nutritional value of peas. A literature review. Nutrition Abstracts and Reviews, Series A. 59: 6588.Google Scholar
Statistical Analysis Systems Institute. 1988. User's guide. Statistical Analysis Systems Institute Inc., Cary, NC.Google Scholar
Union Nationale Interprofessionnelle des Plantes riches en Proteines-Institut Technique des Céréales et Fourrages. 1995. Peas in animal feeding. Institut Technique des Céréales et Fourrages, Paris.Google Scholar
Valdebouze, P., Bergeron, E., Gaborit, T. and Delort-Laval, P. 1980. Content and distribution of trypsin inhibitors and haemagglutinins in some legume seed. Canadian Journal of Plant Science 60: 695701.CrossRefGoogle Scholar
Wang, T. L. and Hedley, C. L. 1991. Seed developement in peas: knowing your three r's (or four or five). Seed Science Research. 1: 314.CrossRefGoogle Scholar
Welch, R. W. and Griffiths, D. W. 1984. Variation in the oil content and fatty acids composition of field beans and peas. Journal of the Science ofFood and Agriculture. 35: 12821289.CrossRefGoogle Scholar