Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T00:21:50.320Z Has data issue: false hasContentIssue false

Effect of feeding diets high in monounsaturated fatty acids and α-tocopheryl acetate to rabbits on resulting carcass fatty acid profile and lipid oxidation

Published online by Cambridge University Press:  02 September 2010

C. Lopez-Bote
Affiliation:
Departamento de Productión Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
A. Rey
Affiliation:
Departamento de Productión Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
J. Ruiz
Affiliation:
Departamento de Zootecnia, Facultad de Veterinaria, Universidad de Extremadura, 10071 Cdceres, Spain
B. Isabel
Affiliation:
Departamento de Productión Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
R. Sanz Arias
Affiliation:
Departamento de Productión Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
Get access

Abstract

The effects of olive (MONO) or sunflower (POLY) oil-enriched (30 g/kg) diets with either a basal (10 mg/kg food) or supplemented (200 mg/kg) level of a-tocopheryl acetate on some measures of production, fatty acid composition of animal tissues and susceptibility to oxidation of rabbit meat and membrane extracts have been studied. MONO diet produced higher levels of C18:1 in animal tissues. Animals that received POLY diet had a higher level of C18:2 in perirenal and neutral fraction of intramuscular fat and higher levels of C18:2, C20:4, C22:4 and C22:5 in phospholipid, reaching a higher overall unsaturation (P = 0·001). Muscle samples from rabbits given the POLY diet were more susceptible to lipid oxidation (P = 0·0001). Differences in membrane lipid oxidation, between groups followed a similar pattern to that of meat. Diets rich in C18:2 resulted in increases in concentration of pentanal (P < 0·001), hexanal (P = 0·0001) and total volatile aldehydes (P = 0·0001) in meat as monitored by headspace gas liquid chromatography. Dietary supplementation with α-tocopheryl acetate reduced the overall concentration of volatile aldehydes (P < 0·05), particularly hexanal (P < 0·05). Dietary administration of monounsaturated fatty acids not only reduces membrane and meat lipid oxidation but also modifies the relative proportion of volatile aldehydes generated upon heating, with a specific decrease in those generally related to rancidity and off-flavour of meats.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antequera, T., López-Bote, C., Córdoba, J. J., García, C., Asensio, M. A. and Ventanas, J. 1992. Lipid oxidative changes in the processing of the Iberian pig hams. Food Chemistry 45:105110.CrossRefGoogle Scholar
Ashgar, A., Lin, C. F., Gray, J. I., Buckley, D. J., Booren, A. M., Crackel, R. and Flegal, C. J. 1989. Influence of oxidized dietary oil and antioxidant supplementation on membrane-bound lipid stability in broiler meat. British Poultry Science 30:815823.Google Scholar
Ashgar, A., Lin, C. F., Gray, J. I., Buckley, D. J., Booren, A. M. and Flegal, C. J. 1990. Effects of dietary oils and α-tocopherol supplementation on membranal lipid oxidation in broiler meat. Journal of Food Science 55:4650.Google Scholar
Association of Official Analytical Chemists. 1984. Official methods of analysis (ed. Williams, S.). Association of Official Analytical Chemists, Arlington, VA.Google Scholar
Berry, E. M. and Hirsch, J. 1986. Does dietary linolenic acid influence blood pressure? American Journal of Clinical Nutrition 44:336340.CrossRefGoogle ScholarPubMed
Bligh, E. G. and Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37:911917.CrossRefGoogle ScholarPubMed
Borgman, R. F. 1964. Fatty acid composition as influenced by dietary fatty acids and vitamin E status in the rabbit. Journal of Food Science 29:2024.CrossRefGoogle Scholar
Cambero, M. I., Hoz, L. de la, Sanz, B. and Ordóñez, J. A. 1991. Lipid and fatty acid composition of rabbit meat: apolar fraction. Meat Science 29: 153166.CrossRefGoogle ScholarPubMed
Cobos, A., Cambero, I., Ordonez, J. A. and Hoz, L. de la. 1993. Effect of fat-enriched diets on rabbit meat fatty acid composition. Journal of the Science of Food and Agriculture 62: 8388.CrossRefGoogle Scholar
Crackel, R. L., Gray, J. I., Pearson, A. M., Booren, A. M. and Buckley, D. J. 1988. Some further observations on the TBA test as an index of lipid oxidation in meats. Food Chemistry 28:187196.CrossRefGoogle Scholar
Ellis, N. R. and Isbell, H. S. 1926. Soft pork studies. 2. The influence of the character of the ration upon the composition of the body fat of hogs. Journal of Biological Chemistry 69: 219238.CrossRefGoogle Scholar
Enser, M. 1984. The chemistry, biochemistry and nutritional importance of animal fats. In Fats in animal nutrition (ed. Wiseman, J.), pp. 2354. Butterworths, London.CrossRefGoogle Scholar
Fernández, C. and Fraga, M. J. 1992. The effect of sources and inclusion level of fat on growth performance. Journal of Applied Rabbit Research 15:10711078.Google Scholar
García, C., Berdagué, J. L., Antequera, T., López-Bote, C., Córdoba, J. and Ventanas, J. 1991. Volatile components of dry cured Iberian ham. Food Chemistry 41:2332.CrossRefGoogle Scholar
Gardner, H. W. 1979. Lipid hydroperoxide reactivity with proteins and amino acids. A review. Journal of Agricultural and Food Chemistry 27:220229.CrossRefGoogle Scholar
Gibson, R. A., McMurchie, E. J., Charnock, J. S. and Kneebone, B. M. 1984. Homeostatic control of membrane fatty acid composition in rat after dietary lipid treatment. Lipids 19: 942947.CrossRefGoogle ScholarPubMed
Gray, J. I. and Pearson, A. M. 1987. Rancidity and warmed-over flavor. In Advances in meat research. Vol. 3 (ed. Pearson, A. M., Dutson, T. R.), pp. 221270. Van Nostrand Reinhold Company, New York.Google Scholar
Grigor, M. R., Mohl, A. and Snyder, F. 1972. Occurrence of ethanolamine- and choline-containing plasmalogens in adipose tissue. Lipids 7: 766768.CrossRefGoogle ScholarPubMed
Grundy, S. M. 1986. Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol. New England Journal of Medicine 314: 745748.CrossRefGoogle ScholarPubMed
Harel, S. and Kaner, J. 1985. Muscle membranal lipid peroxidation initiated by hydrogen peroxide-activated metmyoglobin. Journal of Agricultural and Food Chemistry 33: 11881192.CrossRefGoogle Scholar
Igene, J. O. and Pearson, A. M. 1979. Role of phospholipids and triglycerides in warmed-over flavour development in meat model systems. Journal of Food Science 44:12851290.CrossRefGoogle Scholar
Kornbrust, D. J. and Mavis, R. D. 1980. Relative susceptibility of microsomes from lung, heart, liver, kidney, brain and testes to lipid peroxidation: correlation with vitamin E content. Lipids 15: 315322.CrossRefGoogle ScholarPubMed
Larick, D. K. and Turner, B. E. 1990. Flavor characteristics of forage- and grain-fed beef as influenced by phospholipid and fatty acid compositional differences. Journal of Food Science 55:312317.CrossRefGoogle Scholar
Larick, D. K., Turner, B. E., Schoenherr, W. D., Coffey, M. T. and Pilkington, D. H. 1992. Volatile compound content and fatty acid composition of pork as influenced by linoleic acid content of the diet. Journal of Animal Science 70: 13971403.CrossRefGoogle ScholarPubMed
Lin, C. F., Gray, J. I., Ashgar, A., Buckley, D. J., Booren, A. M. and Flegal, C. J. 1989. Effect of dietary oils and oc-tocopherol supplementation on lipid peroxidation in broiler meat. Journal of Food Science 54:14571460.CrossRefGoogle Scholar
Lopez-Bote, C., Gomaa, E., Gray, J. I. and Flegal, C. J. 1992. Stabilization of broiler lipids (including cholesterol) through dietary supplementation with spice extracts. Proceedings of the 37th international congress of meat science and technology, pp. 523525.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin-phenol reagent. Journal of Biological Chemistry 193: 265275.CrossRefGoogle ScholarPubMed
Mangold, H. K. 1969. Aliphatic lipids. In Thin-layer chromatography (ed. Stahl, E.), pp. 363421. Springer-Verlag, New York.CrossRefGoogle Scholar
Marchello, M. J., Cook, N. K., Slanger, W. D., Johnson, V. K., Fischer, A. G. and Dinusson, W. E. 1983. Fatty acid composition of lean and fat tissue of swine fed various dietary levels of sunflower seed. Journal of Food Science 48: 13311334.CrossRefGoogle Scholar
Marmer, W. N. and Maxwell, R. J. 1981. Dry column method for the quantitative extraction and simultaneous class separation of lipids from muscle tissue. Lipids 16: 365371.CrossRefGoogle ScholarPubMed
Monahan, F. J., Buckley, D. J., Morrisey, P. A., Lynch, P. B. and Gray, J. I. 1992. Influence of dietary fat and α-tocopherol supplementation on lipid oxidation in pork. Meat Science 31: 229241.CrossRefGoogle ScholarPubMed
Monahan, F. J., Gray, J. I., Ashgar, A., Haug, A., Strasburg, G. M., Buckley, D. J. and Morrisey, P. A. 1994. Influence of diet on lipid oxidation and membrane structure in porcine muscle microsomes. Journal of Agricultural and Food Chemistry 42: 5963.CrossRefGoogle Scholar
Myer, R. O., Johnson, D. D., Knauft, D. A., Gorbet, D. W., Brendemuhl, J. H. and Walker, W. R. 1992. Effect of feeding high-oleic-acid peanuts to growing-finishing swine on resulting carcass fatty acid profile and on carcass and meat quality characteristics. Journal of Animal Science 70: 37343741.CrossRefGoogle ScholarPubMed
Ouhayoun, J., Kopp, J., Bonnet, M., Demarne, Y. and Delmas, D. 1987. Influence of dietary fat composition on rabbit perirenal lipids properties and meat quality. Science Alimentaire 7:521534.Google Scholar
Rhee, K. S., Ziprin, Y. A., Ordonez, G. and Bohac, C. E. 1988. Fatty acids profiles of the total lipids and lipid oxidation in pork muscles as affected by canola oil in the animal diet and muscle location. Meat Science 23: 201207.CrossRefGoogle ScholarPubMed
Sandier, S. R. and Karo, W. 1992. Sourcebook of advanced laboratory preparations. Academic Press, San Diego.Google Scholar
Santomá, G., Bias, J. C., Carabaño, R. M. and Fraga, M. J. 1987. The effects of different fats and their inclusion level in diets for growing rabbits. Animal Production 45: 291300.Google Scholar
Selke, E., Rohwedder, W. K. and Duton, H. J. 1980. Volatile components from trilinolein heated in air. Journal of the American Oil Chemists Society 57: 2529.CrossRefGoogle Scholar
Shackelford, S. D., Reagan, J. O., Haydon, K. D. and Miller, M. F. 1990. Effects of feeding elevated levels of monounsaturated fats to growing-finishing swine on acceptability of boneless hams. Journal of Food Science 55: 14851487.CrossRefGoogle Scholar
Shahidi, F., Yun, J., Rubin, L. J. and Wood, D. F. 1987. The hexanal content as an indicator of oxidative stability and flavor acceptability in cooked ground pork. Canadian Institute of Food Science and Technology Journal 20:104111.CrossRefGoogle Scholar
Skelley, G. C., Borgman, R. F., Handlin, D. L., Acton, J. C., McConnell, J. C., Wardlaw, F. B. and Evans, E. J. 1975. Influence of diet on quality, fatty acids and acceptability of pork. Journal of Animal Science 41:12981304.CrossRefGoogle Scholar
Statistical Analysis Systems Institute. 1988. SAS user's guide: statistics. Statistical Analysis Systems Institute Inc., Cary, NC.Google Scholar
St John, L. C., Young, C. R., Knabe, D. A., Thompson, L. D., Schelling, G. T., Grundy, S. M. and Smith, S. B. 1987. Fatty acid profiles and sensory and carcass traits of tissues from steers and swine fed an elevated monounsaturated fat diet. Journal of Animal Science 64: 14411447.CrossRefGoogle ScholarPubMed
Tahin, Q. S., Blum, M. and Carafoli, E. 1981. The fatty acid composition of subcellular membranes of rat liver, heart and brain: diet-induced modification. European Journal of Biochemistry 122: 512.CrossRefGoogle Scholar
Villegas, F. J., Hedrick, H. B., Veum, T. L. and McFate, K. L. 1973. Effect of diet and breed on fatty acid composition of porcine adipose tissue. Journal of Animal Science 36: 663668.CrossRefGoogle Scholar
Wasserman, A. E. 1979. Symposium on meat flavor. Chemical basis for meat flavor: a review. Journal of Food Science 44: 611.CrossRefGoogle Scholar