Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T22:39:44.383Z Has data issue: false hasContentIssue false

Avian influenza virus: prospects for prevention and control by vaccination

Published online by Cambridge University Press:  28 February 2007

Chang-Won Lee
Affiliation:
Southeast Poultry Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
David L. Suarez*
Affiliation:
Southeast Poultry Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA

Abstract

Although vaccination does not always prevent infection of avian influenza (AI) virus, the clear benefit of vaccination is in its ability to prevent disease and to reduce the amount of virus in circulation. Thus, judicious use of vaccination can be an important component of an AI control program. However, the long-term use of vaccination without eradication may result in the selection of the antigenically divergent strains, which compromises the value of vaccination. In this review, the effectiveness of currently available and future AI vaccines is discussed with suggestions for the ideal use of vaccination even with antigenic drift of the virus.

Type
Research Article
Copyright
Copyright © CAB International 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ada, GL and Jones, PD (1986). The immune response to influenza infection. Current Topics in Microbiology and Immunology 128: 154.CrossRefGoogle ScholarPubMed
Alexander, DJ (2003). Newcastle disease. In: Saif, YM, Barnes, HJ, Glisson, JR, Fadly, AM, McDougald, LR and Swayne, DE (eds) Diseases of Poultry. Ames, Iowa: Iowa State University Press, pp. 6487.Google Scholar
Bean, WJ, Schell, M, Katz, J, Kawaoka, Y, Naeve, C, Gorman, O and Webster, RG (1992). Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts. Journal of Virology 66: 11291138.CrossRefGoogle ScholarPubMed
Beard, CW (1986). To vaccinate or not to vaccinate. In: Beard, CW and Easterday, BC (eds) Proceedings of the Second International Symposium on Avian Influenza. Richmond, Virginia: United States Animal Health Association, pp. 258263.Google Scholar
Beard, CW, Schnitzlein, WM and Tripathy, DN (1991). Protection of chickens against highly pathogenic avian influenza virus (H5N2) by recombinant fowlpox viruses. Avian Diseases 35: 356359.CrossRefGoogle ScholarPubMed
Beare, AS and Webster, RG (1991). Replication of avian influenza viruses in humans. Archives of Virology 119: 3742.CrossRefGoogle ScholarPubMed
Birch-Machin, I, Rowan, A, Pick, J, Mumford, J and Binns, M (1997). Expression of the nonstructural protein NS1 of equine influenza A virus: detection of anti-NS1 antibody in post infection equine sera. Journal of Virological Methods 65: 255263.CrossRefGoogle ScholarPubMed
Boyle, DB and Heine, HG (1993). Recombinant fowlpox virus vaccines for poultry. Immunology and Cell Biology 71: 391397.CrossRefGoogle ScholarPubMed
Boyle, DB, Selleck, P and Heine, HG (2000). Vaccinating chickens against avian influenza with fowlpox recombinants expressing the H7 haemagglutinin. Australian Veterinary Journal 78: 4448.CrossRefGoogle ScholarPubMed
Capua, I and Marangon, S (2004). Vaccination for avian influenza in Asia. Vaccine 22: 41374138.CrossRefGoogle ScholarPubMed
Capua, I, Mutinelli, F, Marangon, F and Alexander, DJ (2000). H7N1 avian influenza in Italy (1999–2000) in intensively reared chickens and turkeys. Avian Pathology 29: 537543.CrossRefGoogle Scholar
Capua, I, Terregino, C, Cattoli, G, Mutinelli, F and Rodriguez, JF (2003). Development of a DIVA (differentiating infected from vaccinated animals) strategy using a vaccine containing a heterologous neuraminidase for the control of avian influenza. Avian Pathology 32: 4755.CrossRefGoogle ScholarPubMed
Castellan, DM (2003). Low pathogenic H6N2 avian influenza in California. In: Proceedings of the Fifty-second Western Poultry Disease Conference, Sacramento, California, p. 1.Google Scholar
Caton, AJ, Brownlee, GG, Yewdell, JM and Gerhard, W (1982). The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31: 417427.CrossRefGoogle ScholarPubMed
Cauthen, AN, Beck, J, Swayne, D and Suarez, DL (1999). Effect of influenza NS1 gene on viral pathogenesis and resistance to interferon. American Society for Virology, Abstracts p. 63Google Scholar
Cavanagh, D and Naqi, SA (2003). Infectious bronchitis. In: Saif, YM, Barnes, HJ, Glisson, JR, Fadly, AM, McDougald, LR and Swayne, DE (eds) Diseases of Poultry. Ames, Iowa: Iowa State University Press, pp. 101120.Google Scholar
Chen, Z, Sahashi, Y, Matsuo, K, Asanuma, H, Takahashi, H, Iwasaki, T, Suzuki, Y, Aizawa, C, Kurata, T and Tamura, S (1998). Comparison of the ability of viral protein-expressing plasmid DNAs to protect against influenza. Vaccine 16: 15441549.CrossRefGoogle ScholarPubMed
Chen, Z, Matsuo, K, Asanuma, H, Takahashi, H, Iwasaki, T, Suzuki, Y, Aizawa, C, Kurata, T and Tamura, S (1999). Enhanced protection against a lethal influenza virus challenge by immunization with both hemagglutinin- and neuraminidase-expressing DNAs. Vaccine 17: 653659.CrossRefGoogle ScholarPubMed
Chen, W, Calvo, PA, Malide, D, Gibbs, J, Schubert, U, Bacik, I, Basta, S, O'Neill, R, Schickli, J, Palese, P, Henklein, P, Bennink, JR and Yewdell, JW (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine 7: 13061312.CrossRefGoogle ScholarPubMed
Couch, RB and Kasel, JA (1983). Immunity to influenza in man. Annual Review of Microbiology 37: 529549.CrossRefGoogle ScholarPubMed
Crawford, J, Wilkinson, B, Vosnesensky, A, Smith, G, Garcia, M, Stone, H and Perdue, ML (1999). Baculovirus-derived hemagglutinin vaccines protect against lethal influenza infections by avian H5 and H7 subtypes. Vaccine 17: 22652274.CrossRefGoogle ScholarPubMed
De, BK, Shaw, MW, Rota, PA, Harmon, MW, Esposito, JJ, Rott, R, Cox, NJ and Kendal, AP (1988). Protection against virulent H5 avian influenza virus infection in chickens by an inactivated vaccine produced with recombinant vaccinia virus. Vaccine 6: 257261.CrossRefGoogle ScholarPubMed
Domingo, E and Holland, JJ (1997). RNA virus mutations and fitness for survival. Annual Review of Microbiology 51: 151178.CrossRefGoogle ScholarPubMed
Epstein, SL, Tumpey, TM, Misplon, JA, Lo, CY, Cooper, LA, Subbarao, K, Renshaw, M, Sambhara, S and Katz, JM (2002). DNA vaccine expressing conserved influenza virus proteins protective against H5N1 challenge infection in mice. Emerging Infectious Diseases 8: 796801.CrossRefGoogle ScholarPubMed
Fitch, WM, Bush, RM, Bender, CA and Cox, NJ (1997). Long term trends in the evolution of H(3) HA1 human influenza type A. Proceedings of the National Academy of the Sciences of the USA 94: 77127718.Google ScholarPubMed
Fodor, E, Devenish, L, Engelhardt, OG, Palese, P, Brownlee, GG, Garcia-Sastre, A (1999). Rescue of influenza A virus from recombinant DNA. Journal of Virology 73: 96799682.CrossRefGoogle ScholarPubMed
Fouchier, RA, Schneeberger, PM, Rozendaal, FW, Broekman, JM, Kemink, SA, Munster, V, Kuiken, T, Rimmelzwaan, GF, Schutten, M, Van Doornum, GJ, Koch, G, Bosman, A, Koopmans, M and Osterhaus, AD (2004). Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proceedings of the National Academy of the Sciences of the USA 101: 13561361.Google Scholar
Frace, AM, Klimov, AI, Rowe, T, Black, RA and Katz, JM (1999). Modified M2 proteins produce heterotypic immunity against influenza A virus. Vaccine 17: 22372244.CrossRefGoogle ScholarPubMed
Fynan, EF, Robinson, HL and Webster, RG (1993). Use of DNA encoding influenza hemagglutinin as an avian influenza vaccine. DNA and Cell Biology 12: 785789.CrossRefGoogle ScholarPubMed
Garcia, A, Johnson, H, Srivastava, DK, Jayawardene, DA, Wehr, DR and Webster, RG (1998). Efficacy of inactivated H5N2 influenza vaccines against lethal A/Chicken/Queretaro/19/95 infection. Avian Diseases 42: 248256.CrossRefGoogle ScholarPubMed
Guo, YJ, Krauss, S, Senne, DA, Mo, IP, Lo, KS, Xiong, XP, Norwood, M, Shortridge, KF, Webster, RG and Guan, Y (2000). Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology 267: 279288.CrossRefGoogle ScholarPubMed
Halvorson, DA (1997). Strengths and weaknesses of vaccines as a control tool. In: Swayne, DE and Slemons, RD (eds) Proceedings of the Fourth International Symposium on Avian Influenza. Richmond, Virginia: United States Animal Health Association, pp. 223227.Google Scholar
Halvorson, DA (2002). The control of H5 or H7 mildly pathogenic avian influenza: a role for inactivated vaccine. Avian Pathology 31: 512.CrossRefGoogle ScholarPubMed
Harper, SA, Fukuda, K, Cox, NJ ridges CB dvisory Committee on Immunization Practices (2003). Using live, attenuated influenza vaccine for prevention and control of influenza: supplemental recommendations of the advisory committee on immunization practices (ACIP). Morbidity and Mortality Weekly Report Recommendations and Reports 52: 18.Google ScholarPubMed
Hatta, M, Gao, P, Halfmann, P and Kawaoka, Y (2001). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293: 18401842.CrossRefGoogle ScholarPubMed
Hioe, CE and Hinshaw, VS (1989). Induction and activity of class II-restricted, Lyt-2+ cytolytic T lymphocytes specific for the influenza H5 hemagglutinin. Journal of Immunology 142: 24822488.CrossRefGoogle ScholarPubMed
Hoffmann, E, Krauss, S, Perez, D, Webby, R and Webster, RG (2002). Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine 20: 31653170.CrossRefGoogle ScholarPubMed
Jayawardane, GW and Spradbrow, PB (1995). Mucosal immunity in chickens vaccinated with the V4 strain of Newcastle disease virus. Veterinary Microbiology 46: 6977.CrossRefGoogle ScholarPubMed
Johansson, BE, Bucher, DJ and Kilbourne, ED (1989). Purified influenza virus hemagglutinin and neuraminidase are equivalent in stimulation of antibody response but induce contrasting types of immunity to infection. Journal of Virology 63: 12391246.CrossRefGoogle ScholarPubMed
Johansson, BE, Pokorny, BA and Tiso, VA (2002). Supplementation of conventional trivalent influenza vaccine with purified viral N1 and N2 neuraminidases induces a balanced immune response without antigenic competition. Vaccine 20: 16701674.CrossRefGoogle ScholarPubMed
Katz, JM, Lu, X, Frace, AM, Morken, T, Zaki, SR and Tumpey, TM (2000). Pathogenesis of and immunity to avian influenza A H5 viruses. Biomedicine & Pharmacotherapy 54: 178187.CrossRefGoogle ScholarPubMed
Kaverin, NV, Rudneva, IA, Ilyushina, NA, Varich, NL, Lipatov, AS, Smirnov, YA, Govorkova, EA, Gitelman, AK, Lvov, DK and Webster, RG (2002). Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. Journal of General Virology 83: 24972505.CrossRefGoogle ScholarPubMed
Kawaoka, Y, Naeve, CW and Webster, RG (1984). Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin. Virology 139: 303316.CrossRefGoogle ScholarPubMed
Kermode-Scott, B (2004). WHO confirms avian flu infections in Canada British Medical Journal 328 913.CrossRefGoogle ScholarPubMed
Kilbourne, ED (1969). Future influenza vaccines and the use of genetic recombinants. Bulletin of the World Health Organization 41: 643645.Google ScholarPubMed
Kodihalli, S, Sivanandan, V, Nagaraja, KV, Shaw, D and Halvorson, DA (1994). A type-specific avian influenza virus subunit vaccine for turkeys: induction of protective immunity to challenge infection. Vaccine 12: 14671472.CrossRefGoogle ScholarPubMed
Kodihalli, S, Kobasa, DL and Webster, RG (2000). Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines. Vaccine 18: 25922599.CrossRefGoogle ScholarPubMed
Kreager, KS (1998). Chicken industry strategies for control of tumor virus infections. Poultry Science 77: 12131216.CrossRefGoogle ScholarPubMed
Krug, RM, Yuan, W, Noah, DL and Latham, AG (2003). Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology 309: 181189.CrossRefGoogle ScholarPubMed
Lamb, RA and Krug, RM (2001). Orthomyxoviridae: the viruses and their replication. In: Knipe, DM and Howle, PM (eds) Fields Virology. Philadelphia: Lippincott Williams & Wilkins, pp. 14871532.Google Scholar
Lee, CW, Senne, DA and Suarez, DL (2003). Development of hemagglutinin subtype-specific reference antisera by DNA vaccination of chickens. Avian Diseases 47: 10511056.CrossRefGoogle ScholarPubMed
Lee, CW, Senne, DA and Suarez, DL (2004a). Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. Journal of Virology 78: 83728381.CrossRefGoogle ScholarPubMed
Lee, CW, Senne, DA and Suarez, DL (2004b). Generation of reassortant influenza vaccines by reverse genetics that allows utilization of a DIVA (differentiating infected from vaccinated animals) strategy for the control of avian influenza. Vaccine 22: 31753181.CrossRefGoogle ScholarPubMed
Li, KS, Guan, Y, Wang, J, Smith, GJ, Xu, KM, Duan, L, Rahardjo, AP, Puthavathana, P, Buranathai, C, Nguyen, TD, Estoepangestie, AT, Chaisingh, A, Auewarakul, P, Long, HT, Hanh, NT, Webby, RJ, Poon, LL, Chen, H, Shortridge, KF, Yuen, KY, Webster, RG and Peiris, JS (2004). Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430: 209213.CrossRefGoogle ScholarPubMed
Liu, M, Wood, JM, Ellis, T, Krauss, S, Seiler, P, Johnson, C, Hoffmann, E, Humberd, J, Hulse, D, Zhang, Y, Webster, RG and Perez, DR (2003). Preparation of a standardized, efficacious agricultural H5N3 vaccine by reverse genetics. Virology 314: 580590.CrossRefGoogle ScholarPubMed
Luschow, D, Werner, O, Mettenleiter, TC and Fuchs, W (2001). Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 19: 42494259.CrossRefGoogle ScholarPubMed
Makarova, NV, Ozaki, H, Kida, H, Webster, RG and Perez, DR (2003). Replication and transmission of influenza viruses in Japanese quail. Virology 310: 815.CrossRefGoogle ScholarPubMed
McMichael, AJ, Gotch, FM, Noble, GR and Beare, PA (1983). Cytotoxic T-cell immunity to influenza. New England Journal of Medicine 309: 1317.CrossRefGoogle ScholarPubMed
McNulty, MS, Allan, GM and Adair, BM (1986). Efficacy of avian influenza neuraminidase-specific vaccines in chickens. Avian Pathology 15: 107115.CrossRefGoogle ScholarPubMed
Murphy, BR, Park, EJ, Gottlieb, P and Subbarao, K (1997). An influenza A live attenuated reassortant virus possessing three temperature-sensitive mutations in the PB2 polymerase gene rapidly loses temperature sensitivity following replication in hamsters. Vaccine 15: 13721378.CrossRefGoogle ScholarPubMed
Muster, T, Subbarao, EK, Enami, M, Murphy, BR and Palese, P (1991). An influenza A virus containing influenza B virus 5' and 3' noncoding regions on the neuraminidase gene is attenuated in mice. Proceedings of the National Academy of the Sciences of the USA 88: 51775181.Google ScholarPubMed
Naeem, K (1997). The avian influenza H7N3 outbreak in south central Asia. In: Swayne, DE and Slemons, RD (eds) Proceedings of the Fourth International Symposium on Avian Influenza. Richmond, Virginia: United States Animal Health Association, pp. 3135.Google Scholar
Nayak, DP, Davis, AR, McQueen, NL, Bos, TJ, Jabbar, MA, Sivasubramanian, N and Lionelli, G (1985). Biological and immunological properties of haemagglutinin and neuraminidase expressed from cloned cDNAs in prokaryotic and eukaryotic cells. Vaccine 3 (suppl.): 165171.CrossRefGoogle ScholarPubMed
Neirynck, S, Deroo, T, Saelens, X, Vanlandschoot, P, Jou, WM and Fiers, W (1999). A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nature Medicine 5: 11571163.CrossRefGoogle ScholarPubMed
Neumann, G, Watanabe, T, Ito, H, Watanabe, S, Goto, H, Gao, P, Hughes, M, Perez, DR, Donis, R, Hoffmann, E, Hobom, G and Kawaoka, Y (1999). Generation of influenza A viruses entirely from cloned cDNAs. Proceedings of the National Academy of the Sciences of the USA 96: 93459350.Google ScholarPubMed
Oxford, J, Eswarasaran, R, Mann, A and Lambkin, R (2003). Influenza – the chameleon virus. In: Craig, A and Scherf, A (eds) Antigenic Variation. London, UK: Academic Press, pp. 5283.CrossRefGoogle Scholar
Ozaki, H, Sugiura, T, Sugita, S, Imagawa, H and Kida, H (2001). Detection of antibodies to the nonstructural protein (NS1) of influenza A virus allows distinction between vaccinated and infected horses. Veterinary Microbiology 82: 111119.CrossRefGoogle Scholar
Parkin, NT, Chiu, P and Coelingh, K (1997). Genetically engineered live attenuated influenza A virus vaccine candidates. Journal of Virology 71: 27722778.CrossRefGoogle ScholarPubMed
Peiris, JS, Yu, WC, Leung, CW, Cheung, CY, Ng, WF, Nicholls, JM, Ng, TK, Chan, KH, Lai, ST, Lim, WL, Yuen, KY and Guan, Y (2004). Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 363: 617619.CrossRefGoogle ScholarPubMed
Peiris, M, Yuen, KY, Leung, CW, Chan, KH, Ip, PL, Lai, RW, Orr, WK and Shortridge, KF (1999). Human infection with influenza H9N2. Lancet 354: 916917.CrossRefGoogle ScholarPubMed
Perdue, ML, Garcia, M, Beck, J, Brugh, M and Swayne, D (1996). An Arg–Lys insertion at the hemagglutinin cleavage site of an H5N2 avian influenza isolate. Virus Genes 12: 7784.CrossRefGoogle ScholarPubMed
Perez, DR, Lim, W, Seiler, JP, Yi, G, Peiris, M, Shortridge, KF and Webster, RG (2003). Role of Quail in the interspecies transmission of H9 influenza A viruses: molecular changes on HA that correspond to adaptation from ducks to chickens. Journal of Virology 77: 31483156.CrossRefGoogle ScholarPubMed
Raj, GD and Jones, RC (1996). Local antibody production in the oviduct and gut of hens infected with a variant strain of infectious bronchitis virus. Veterinary Immunology and Immunopathology 53: 147161.CrossRefGoogle ScholarPubMed
Ricks, CA, Avakian, A, Bryan, T, Gildersleeve, R, Haddad, E, Ilich, R, King, S, Murray, L, Phelps, P, Poston, R, Whitfill, C and Williams, C (1999). In ovo vaccination technology. Advances in Veterinary Medicine 41: 495515.CrossRefGoogle Scholar
Schlesinger, S and Dubensky, TW (1999). Alphavirus vectors for gene expression and vaccines. Current Opinion in Biotechnology 10: 434439.CrossRefGoogle ScholarPubMed
Schultz, U, Fitch, WM, Ludwig, S, Mandler, J and Scholtissek, C (1991). Evolution of pig influenza viruses. Virology 183: 6173.CrossRefGoogle ScholarPubMed
Schultz-Cherry, S, Dybing, JK, Davis, NL, Williamson, C, Suarez, DL, Johnston, R and Perdue, ML (2000). Influenza virus (A/HK/156/97) hemagglutinin expressed by an alphavirus replicon system protects chickens against lethal infection with Hong Kong-origin H5N1 viruses. Virology 278: 5559.CrossRefGoogle Scholar
Senne, DA, Pederson, JC, Suarez, DL, Smith, WG, Sherman, B and Panigrahy, B (2004). Control of Low Pathogenic H7N2 Avian Influenza in Multiage Layers in Connecticut by Conventional and Diva Vaccination Strategies. Philadelphia, PA: 141th AVMA Annual Convention.Google Scholar
Seo, SH and Webster, RG (2001). Cross-reactive, cell-mediated immunity and protection of chickens from lethal H5N1 influenza virus infection in Hong Kong poultry markets. Journal of Virology 75: 25162525.CrossRefGoogle ScholarPubMed
Seo, SH, Hoffmann, E and Webster, RG (2002). Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nature Medicine 8: 950954.CrossRefGoogle ScholarPubMed
Seo, SH, Peiris, M and Webster, RG (2002). Protective cross-reactive cellular immunity to lethal a/goose/guangdong/1/96-like H5N1 influenza virus is correlated with the proportion of pulmonary CD8+ T cells expressing gamma interferon. Journal of Virology 76: 48864890.CrossRefGoogle ScholarPubMed
Sharma, JM (1999). Introduction to poultry vaccines and immunity. Advances in Veterinary Medicine 41: 481494.CrossRefGoogle ScholarPubMed
Sharma, JM (2003). The avian immune system. In: Saif, YM, Barnes, HJ, Glisson, JR, Fadly, AM, McDougald, LR and Swayne, DE (eds) Diseases of Poultry. Ames, Iowa: Iowa State University Press, pp. 516.Google Scholar
Slepushkin, VA, Katz, JM, Black, RA, Gamble, WC, Rota, PA and Cox, NJ (1995). Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein. Vaccine 13: 13991402.CrossRefGoogle ScholarPubMed
Spackman, E, Senne, DA, Davison, S and Suarez, DL (2003). Sequence analysis of recent H7 avian influenza viruses associated with three different outbreaks in commercial poultry in the United States. Journal of Virology 77: 1339913402.CrossRefGoogle ScholarPubMed
Stone, HD (1987). Efficacy of avian influenza oil-emulsion vaccines in chickens of various ages. Avian Diseases 31: 483490.CrossRefGoogle ScholarPubMed
Suarez, DL (2000). Evolution of avian influenza viruses. Veterinary Microbiology 74: 1527.CrossRefGoogle ScholarPubMed
Suarez, DL, Schultz-Cherry, S (2000). Immunology of avian influenza virus: a review. Developmental and Comparative Immunology 24: 269283.CrossRefGoogle ScholarPubMed
Suarez, DL and Senne, DA (2000). Sequence analysis of related low-pathogenic and highly pathogenic H5N2 avian influenza isolates from United States live bird markets and poultry farms from 1983 to 1989. Avian Diseases 44: 356364.CrossRefGoogle ScholarPubMed
Suarez, DL, Senne, DA, Banks, J, Brown, IH, Essen, SC, Lee, CW, Manvell, RJ, Mathieu-Benson, C, Mareno, V, Pedersen, J, Panigrahy, B, Rojas, H, Spackman, E and Alexander, DJ (2004). A virulence shift in the influenza A subtype H7N3 virus responsible for a natural outbreak of avian influenza in Chile appears to be the result of recombination. Emerging Infectious Diseases 10: 693699.CrossRefGoogle Scholar
Subbarao, K, Klimov, A, Katz, J, Regnery, H, Lim, W, Hall, H, Perdue, M, Swayne, D, Bender, C, Huang, J, Hemphill, M, Rowe, T, Shaw, M, Xu, X, Fukuda, K and Cox, N (1998). Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279: 393396.CrossRefGoogle ScholarPubMed
Swayne, DE (2003). Vaccines for list A poultry diseases: emphasis on avian influenza. Development in Biologics (Basel) 114: 201212.Google Scholar
Swayne, DE and Halvorson, DA (2003). Influenza. In: Saif, YM, Barnes, HJ, Glisson, JR, Fadly, AM, McDougald, LR and Swayne, DE (eds) Diseases of Poultry. Ames, Iowa: Iowa State University Press, pp. 135160.Google Scholar
Swayne, DE, Beck, JR and Mickle, TR (1997). Efficacy of recombinant fowl poxvirus vaccine in protecting chickens against a highly pathogenic Mexican-origin H5N2 avian influenza virus. Avian Diseases 41: 910922.CrossRefGoogle ScholarPubMed
Swayne, DE, Beck, JR, Garcia, M and Stone, HD (1999). Influence of virus strain and antigen mass on efficacy of H5 avian influenza inactivated vaccines. Avian Pathology 28: 245255.CrossRefGoogle ScholarPubMed
Swayne, DE, Perdue, ML, Beck, JR, Garcia, M and Suarez, DL (2000a). Vaccines protect chickens against H5 highly pathogenic avian influenza in the face of genetic changes in field viruses over multiple years. Veterinary Microbiology 74: 165172.CrossRefGoogle ScholarPubMed
Swayne, DE, Garcia, M, Beck, JR, Kinney, N and Suarez, DL (2000b). Protection against diverse highly pathogenic H5 avian influenza viruses in chickens immunized with a recombinant fowlpox vaccine containing an H5 avian influenza hemagglutinin gene insert. Vaccine 18: 10881095.CrossRefGoogle ScholarPubMed
Swayne, DE, Beck, JR and Kinney, N (2000c). Failure of a recombinant fowl poxvirus vaccine containing an avian influenza hemagglutinin gene to provide consistent protection against influenza in chickens preimmunized with a fowl pox vaccine. Avian Diseases 44: 132137.CrossRefGoogle ScholarPubMed
Swayne, DE, Beck, JR, Perdue, ML and Beard, CW (2001). Efficacy of vaccines in chickens against highly pathogenic Hong Kong H5N1 avian influenza. Avian Diseases 45: 355365.CrossRefGoogle ScholarPubMed
Swayne, DE, Suarez, DL, Schultz-Cherry, S, Tumpey, TM, King, DJ, Nakaya, T, Palese, P, Garcia-Sastre, A (2003). Recombinant paramyxovirus type 1-avian influenza-H7 virus as a vaccine for protection of chickens against influenza and Newcastle disease. Avian Diseases 47: 10471050.CrossRefGoogle ScholarPubMed
Talon, J, Salvatore, M, O'Neill, RE, Nakaya, Y, Zheng, H, Muster, T, Garcia-Sastre, A and Palese, P (2000). Influenza A and B viruses expressing altered NS1 proteins: a vaccine approach. Proceedings of the National Academy of the Sciences of the USA 97: 43094314.Google Scholar
Taylor, J, Weinberg, R, Kawaoka, Y, Webster, RG and Paoletti, E (1988). Protective immunity against avian influenza induced by a fowlpox virus recombinant. Vaccine 6: 504508.CrossRefGoogle ScholarPubMed
Tsuchiya, E, Sugawara, K, Hongo, S, Matsuzaki, Y, Muraki, Y, Li, ZN and Nakamura, K (2001). Antigenic structure of the haemagglutinin of human influenza A/H2N2 virus. Journal of General Virology 82: 24752484.CrossRefGoogle ScholarPubMed
Tumpey, TM, Alvarez, R, Swayne, DE and Suarez, DL (2005). Diagnostic approach for differentiating infected from vaccinated poultry on the basis of antibodies to NS1, the nonstructural protein of influenza A virus. Journal of Clinical Microbiology 43: 676683.CrossRefGoogle ScholarPubMed
Villarreal-Chavez, C, Rivera-Cruz, E (2003). An update on avian influenza in Mexico. Avian Diseases 47: 10021005.CrossRefGoogle ScholarPubMed
Voeten, JT, Brands, R, Palache, AM van Scharrenburg, GJ, Rimmelzwaan, GF, Osterhaus, AD and Claas, EC (1999). Characterization of high-growth reassortant influenza A viruses generated in MDCK cells cultured in serum-free medium. Vaccine 17: 19421950.CrossRefGoogle ScholarPubMed
Wareing, MD and Tannock, GA (2001). Live attenuated vaccines against influenza; an historical review. Vaccine 19: 33203330.CrossRefGoogle ScholarPubMed
Watanabe, T, Watanabe, S, Kida, H and Kawaoka, Y (2002a). Influenza A virus with defective M2 ion channel activity as a live vaccine. Virology 299: 266270.CrossRefGoogle ScholarPubMed
Watanabe, T, Watanabe, S, Neumann, G, Kida, H and Kawaoka, Y (2002b). Immunogenicity and protective efficacy of replication-incompetent influenza virus-like particles. Journal of Virology 76: 767773.CrossRefGoogle ScholarPubMed
Webster, RG and Laver, WG (1975). Antigenic variation of influenza viruses. In: Kilbourne, (ed.) The Influenza Viruses and Influenza. New York: Academic Press, pp. 269314.Google ScholarPubMed
Webster, RG and Rott, R (1987). Influenza virus A pathogenicity: the pivotal role of hemagglutinin. Cell 50: 665666.CrossRefGoogle ScholarPubMed
Webster, RG, Reay, PA and Laver, WG (1988). Protection against lethal influenza with neuraminidase. Virology 164: 230237.CrossRefGoogle ScholarPubMed
Webster, RG, Taylor, J, Pearson, J, Rivera, E and Paoletti, E (1996). Immunity to Mexican H5N2 avian influenza viruses induced by a fowl pox-H5 recombinant. Avian Diseases 40: 461465.CrossRefGoogle ScholarPubMed
Wiley, DC, Wilson, IA and Skehel, JJ (1981). Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289: 373378.CrossRefGoogle ScholarPubMed
Witter, RL and Schat, KA (2003). Marek's disease. In: Saif, YM, Barnes, HJ, Glisson, JR, Fadly, AM, McDougald, LR and Swayne, DE (eds) Diseases of Poultry. Ames, Iowa: Iowa State University Press, pp. 407464.Google Scholar
Yap, KL, Ada, GL and McKenzie, IF (1978). Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus. Nature 273: 238239.CrossRefGoogle ScholarPubMed