Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T23:09:49.354Z Has data issue: false hasContentIssue false

Sustainable use and genetic improvement

Published online by Cambridge University Press:  01 August 2011

C. Nimbkar
Affiliation:
Animal Husbandry Division, Nimbkar Agricultural Research Institute, P.O. Box 23, Phaltan 415 523, Maharashtra, India
J. Gibson
Affiliation:
The Institute for Genetics and Bioinformatics, C.J. Hawkins Homestead, University of New England, Armidale, NSW 2351, Australia
M. Okeyo
Affiliation:
International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
P. Boettcher
Affiliation:
Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400 Vienna, Austria
J. Soelkner
Affiliation:
University of Natural Resources and Applied Life Sciences, Vienna, Austria
Get access

Summary

Sustainable use of animal genetic resources for agriculture and food production is proposed as the best strategy for maintaining their diversity. Achievement of sustainable use would continue to support livelihoods and minimize the long-term risk for survival of animal populations. The concept of sustainable use has economic, environmental and socio-cultural dimensions. Sustainable use of animal genetic resources also contributes to food security, rural development, increasing employment opportunities and improving standards of living of keepers of breeds. Supporting the rearing of breeds through better infrastructure, services, animal health care, marketing opportunities and other interventions would make a significant contribution to the sustainable use of animal genetic resources.

Sustainable use envisages the use and improvement of breeds that possess high levels of adaptive fitness to the prevailing environment. It also encompasses the deployment of sound genetic principles for sustainable development of the breeds and the sustainable intensification of the production systems themselves. Sustainable use and genetic improvement rely on access to a wide pool of genetic resources.

Genetic improvement programmes need to be considered in terms of national agriculture and livestock development objectives, suitability to local conditions and livelihood security as well as environmental sustainability. Genetic improvement can involve choice of appropriate breeds, choice of a suitable pure breeding or crossbreeding system and application of within-breed genetic improvement. The choice of appropriate breeds and crossbreeding systems in developed countries has been a major contributor to the large increases in productivity, and has benefited greatly from the fact that developed country animal genetic resources are well characterized and relatively freely exchanged. Where proper steps have been followed by careful assessment of demand, execution, delivery, impact and cost-benefit analyses, successful within-breed improvement has been realized within indigenous populations in developing countries. Breeding objectives and programmes for subsistence oriented and pastoralist systems are likely to be entirely different from conventional programmes. Crossbreeding has been most successful where it is followed by a rigorous selection programme involving livestock owners' participation and substantial public sector investment in the form of technical support. In any genetic improvement programme, inbreeding needs to be monitored and controlled.

Within-breed genetic improvement is normal practice in the developed world, and has become a highly technical enterprise, involving a range of reproduction, recording, computing and genomic technologies. Emerging genomic technologies promise the ability to identify better, use and improve developing world animal genetic resources in the foreseeable future. Useful systems can, however, be established without the need for application of advanced technology or processes.

Résumé

On propose une utilisation durable des ressources génétiques animales pour l'agriculture et l'alimentation comme meilleure stratégie pour la conservation de la diversité. Atteindre l'utilisation durable permettra d'améliorer la qualité de vie et diminuera le risque à long terme de la survie des populations animales. Le concept d'utilisation durable entraîne des mesures économiques, environnementales et socioculturelles. L'utilisation durable des ressources génétiques animales contribue aussi à la sécurité alimentaire, au développement rural, à l'augmentation des opportunités d'emploi et à l'amélioration des standards de vie des éleveurs. Soutenir l'amélioration des races à travers une meilleure infrastructure de services, de santé animale, d'opportunités de marché et d'autres interventions pourrait aider de façon significative à l'utilisation durable des ressources génétiques animales. L'utilisation durable comporte l'utilisation et amélioration des races qui possèdent des hauts niveaux d'adaptation physique aux principaux milieux. Cela comporte aussi l'application de principes génétiques adéquats au développement durable des races et à l'intensification durable des systèmes de production en soi. L'utilisation durable et l'amélioration génétique se basent sur l'accès à une large gamme de ressources génétiques.

Les programmes d'amélioration génétique doivent être considérés en termes d'agriculture nationale et développement des objectifs d'élevage, ainsi que compatible avec les conditions locales de moyens d'existence et d'environnement durable. L'amélioration génétique peut entraîner le choix de races plus appropiées, races plus pures adaptées ou un système de croisement de races et l'application de l'amélioration génétique à l'intérieur de la race elle-même. Le choix de la race et des systèmes de croisement de races dans les pays en développement a été un des facteurs qui a influencé le plus l'augmentation de la productivité et a bénéficier largement le fait que dans les pays développés les ressources génétiques animales soient bien caractérisées et puissent bénéficier d'un mouvement relativement libre. Là où les démarches appropriées ont été suivies à travers des évaluations correctes sur la demande, l'exécution, la remise, l'impact et l'analyse de coût-bénéfice, le succès de l'amélioration à l'intérieur de la race a tout de suite été atteint avec les population indigènes dans les pays en développement. Les objectifs d'amélioration et les programmes pour la subsistance et les systèmes de pâturage seront différents des programmes conventionnels. Les croisements de races ont eu plus de succès lorsqu'un programme de sélection rigoureux a été suivi et quand la participation des éleveurs et une partie du secteur public a été présente en forme d'investissement et appui technique. Dans tout programme d'amélioration génétique il est nécessaire de contrôler et faire un suivi de la consanguinité.

L'amélioration génétique de la race est une pratique normale dans le monde développé et est devenue une entreprise hautement technique qui met ensemble les domaines de la reproduction, le contrôle, l'identification et technologies du génome. Les nouvelles technologies du génome promettent dans un futur proche une meilleure capacité d'identification et l'utilisation et amélioration des ressources génétiques animales dans le monde en développement. Des systèmes utiles peuvent cependant être établis sans la nécessité d'appliquer des procédures ou des technologies à l'avant-garde.

Resumen

Se propone una utilización sostenible de los recursos zoogenéticos para la agricultura y la alimentación como mejor estrategia para el mantenimiento de su diversidad. Alcanzar el uso sostenible contribuirá a la mejora de la calidad de vida y minimizara el riesgo a largo plazo de la supervivencia de las poblaciones animales. El concepto de utilización sostenible conlleva dimensiones económicas, ambientales y socioculturales. La utilización sostenible de los recursos zoogenéticos también contribuye a la seguridad alimentaria, el desarrollo rural, el aumento de oportunidades de empleo y la mejora de los estándares de vida de los ganaderos. Apoyar la cría de razas a través de una mejor infraestructura, servicios, cuidados sanitarios de los animales, oportunidades de mercado y otras intervenciones contribuiría de forma significativa a la utilización sostenible de los recursos zoogenéticos.

La utilización sostenible comporta el uso y mejora de las razas que poseen altos niveles de adaptación de su forma física a los principales ambientes. También conlleva el despliegue de principios genéticos adecuados para el desarrollo sostenible de las razas y la intensificación sostenible de los sistemas de producción en sí mismos. La utilización sostenible y la mejora genética se basan en el acceso a un amplia gama de recursos genéticos.

Los programas de mejora genética necesitan ser considerados en términos de agricultura nacional y desarrollo de objetivos ganaderos, así como compatibilidad con las condiciones locales y seguridad de sustento y sostenibilidad ambientales. La mejora genética puede implicar la elección de las razas más apropiadas, la raza más pura adecuada o un sistema de cruce de razas y la aplicación de mejora genética dentro de la raza. La elección de la raza adecuada y de los sistemas de cruces de razas en los países en vía de desarrollo ha sido uno de los factores que más ha influido en el incremento de la productividad, y se ha beneficiado ampliamente del hecho que en los países desarrollados los recursos zoogenéticos están bien caracterizados y gozan de un intercambio relativamente libre. Donde se han seguido los pasos adecuados con evaluaciones correctas sobre la demanda, ejecución, consigna, impacto y análisis de costo-beneficio, el éxito de la mejora dentro de la raza ha sido alcanzado con poblaciones indígenas en países en vía de desarrollo. Los objetivos de mejora y los programas para la subsistencia y sistemas pastorales serán mayormente distintos de los programas convencionales. Los cruces de razas han tenido mayor éxito donde se ha seguido un programa de selección riguroso que implique la participación de ganaderos y parte substancial del sector publico en forma de inversión y soporte técnico. En todo programa de mejora genética es necesario controlar y monitorear la consanguinidad.

La mejora genética dentro de la raza es una práctica normal en el mundo desarrollado y se ha convertido una empresa altamente técnica que cubre los campos de reproducción, control, computo y tecnologías de genoma. Las nuevas tecnologías de genoma prometen la capacidad para identificar mejor y la utilización y mejora de los recursos zoogenéticos del mundo en vía de desarrollo en un futuro próximo. Los sistemas útiles pueden sin embargo ser establecidos sin la necesidad de aplicar procedimientos o tecnologías de vanguardia.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

List of references

Chauhan, R.S., Singh, D.D., Singhal, L.K. & Kumar, R. 2004. Effect of cow urine on interleukin-1 and 2. Journal of Immunology and Immunopathology, 6(1): 3839.Google Scholar
de Waal, H.O. & Combrinck, W.J. 2000. The development of the Dorper, its nutrition and a perspective of the grazing ruminant on veld. Small Ruminant Research, 36(2): 103117.CrossRefGoogle Scholar
FAO. 2006a. Report on an expert meeting on sustainable utilization. Commission on Genetic Resources for Food and Agriculture. Intergovernmental Technical Working Group on Animal Genetic Resources for Food and Agriculture. Fourth session. 13-15 December 2006. Rome.Google Scholar
FAO. 2006b. A strategic approach for conservation and continued use of animal genetic resources. Commission on Genetic Resources for Food and Agriculture. Intergovernmental Technical Working Group on Animal Genetic Resources for Food and Agriculture. Fourth session. 13-15 December 2006. Rome.Google Scholar
FAO. 2007. The State of the World's Animal Genetic Resources for Food and Agriculture, edited by Rischkowsky, B. & Pilling, D.Rome.Google Scholar
FAO. 2008. Report of the FAO/WAAP Expert Meeting on Sustainable Utilization of Animal Genetic Resources, Ferentillo, Italy, 2-4 July 2006, by Weary, D., Pilling, D. & Rischkowsky, B.. Rome. (Forthcoming - full proceedings including presented papers).Google Scholar
Gandini, G. & Oldenbroek, K. 2007. Strategies for moving from conservation to utilization. In Oldenbroek, K., (Ed.). Utilization and conservation of farm animal genetic resources, Wageningen, Netherlands, Wageningen Academic Publishers, pp. 2954.CrossRefGoogle Scholar
Janssens, S. & Vandepitte, W. 2004. Genetic parameters for body measurements and linear type traits in Belgian Bleu du Maine, Suffolk and Texel sheep. Small Ruminant Research, 54: 1324.CrossRefGoogle Scholar
Johnson, L.A., Flook, J.P., Look, M.V. & Pinkel, D. 1987. Flow sorting of X and Y chromosome-bearing spermatozoa into two populations. Gamete Research, 16: 19.CrossRefGoogle ScholarPubMed
King, J.M., Parsons, D.J., Turnpenny, J.R., Nyangaga, J., Bakari, P. & Wathes, C.M. 2006. Modelling energy metabolism of Friesians in Kenya smallholdings shows how heat stress and energy deficit constrain milk yield and cow replacement rate. Animal Science, 82(5): 705716.CrossRefGoogle Scholar
KLDB (Kerala Livestock Development Board). 2004. Capitalization of experiences in Kerala Livestock Development Board. Kerala, India. pp. 158.Google Scholar
Köhler-Rollefson, I. 2004. Farm animal genetic resources. Safeguarding national assets for food security and trade. GTZ, FAO, CTA, pp. 60.Google Scholar
Köhler-Rollefson, I. & LIFE Network. 2007. Keepers of genes: the interdependence between pastoralists, breeds, access to the commons, and livelihoods. Sadri, Rajasthan, India, LIFE Network. pp. 57.Google Scholar
Kosgey, I.S. & Okeyo, A.M. 2007. Genetic improvement of small ruminants in low input, smallholder production systems: technical and infrastructural issues. Small Ruminant Research, 70: 7688.Google Scholar
Kumar, A., Birthal, P.S. & Joshi, P.K. 2003. Research on crossbreeding in cattle: an analysis of its economic and social impact in India. Agricultural Economics Research Review, 16(2): 91102.Google Scholar
Lewis, M. 2003. Cattle and conservation at Bharatpur: a case study in science and advocacy. Conservation and Society, 1: 121.Google Scholar
Madalena, F.E. 2005. Considerations on the management of animal genetic resources in Latin America. Proceedings of EAAP/SLU/FAO/ICAR Workshop on Sustainable Management of Animal Genetic Resources: Linking perspectives globally. 2 June 2005, Uppsala, Sweden, pp. 10.Google Scholar
Malan, S.W. 2000. The improved Boer goat. Small Ruminant Research, 36(2): 165170.CrossRefGoogle ScholarPubMed
Malmfors, B.M., Smalley, M., Philipsson, J., Ibrahim, H., Anderson-Eklund, L., Mwai, O., Mpofu, N. & Rege, J.E.O. 2002. Capacity building for sustainable use of animal genetic resources in developing countries- A new approach. 7th World Congress on Genetics Applied to Livestock Production. 19-23 August 2002, Montpellier, France. CD-ROM Communication No. 29-04.Google Scholar
Meuwissen, T.H.E., Hayes, B.J. & Goddard, M.E. 2001. Prediction of total genetic value using genome wide dense marker maps. Genetics, 157: 18191829.CrossRefGoogle ScholarPubMed
Mueller, J.P., Flores, E.R. & Gutierrez, G.A. 2002. Experiences with a large scale sheep genetic improvement project in the Peruvian highlands. 7th World Congress on Genetics Applied to Livestock Production. 19-23 August 2002, Montpellier, France. CD-ROM Communication No. 25-12.Google Scholar
Mueller, J.P., Poore, M.H. & Skroch, W.A. 1999. Damage assessment in Christmas tree plantations following vegetation control with sheep and geese. Southern Journal of Applied Forestry, 23 1115.CrossRefGoogle Scholar
Philipsson, J., Rege, J.E.O. & Okeyo, A.M. 2006. Sustainable breeding programs for tropical farming systems. In Ojango, J.M., Malmfors, B., & Okeyo, A.M., (Eds). Animal genetics training resources. CD-ROM, Version 2. Nairobi, International Livestock Research Institute and Uppsala, Sweden, Swedish University of Agricultural Sciences.Google Scholar
Sonesson, A.K. & Meuwissen, T.H. 2000. Mating schemes for optimum contribution selection with constrained rates of inbreeding. Genetics Selection Evolution, 32: 231248.Google Scholar
Sponenberg, D. P. 2007. Rainbow livestock: Nguni cattle, Damara sheep, and indigenous goat types. South African Studbreeder. Issue 17. South African Studbook Authority.Google Scholar
Samhita, Sushrata. 1985. The medical science of ancient Aryans, 2nd ed., edited and translated by Bandyopadhyaya, A.C.. Calcutta, India.Google Scholar
van der Werf, J.H.J. 2007. Marker-assisted selection in sheep and goats. In Guimaraes, E., Ruane, J., Scherf, B., Sonnino, A. & Dargie, J. (Eds). Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish. Rome, FAO.Google Scholar
Vasconcelos, J., Martins, A., Petim-Batista, M.F., Colaço, J., Blake, R.W. & Carvalheira, J. 2004. Prediction of daily and lactation yields of milk, fat, and protein using an autoregressive repeatability test day model. Journal of Dairy Science, 87: 25912598.CrossRefGoogle ScholarPubMed
Weigel, K.A. 2004. Exploring the role of sexed semen in dairy production systems. Journal of Dairy Science, 87: E120E130.CrossRefGoogle Scholar
Wurzinger, M., Ndumu, D., Baumung, R., Drucker, A., Okeyo, A.M., Semambo, D.K., Byamungu, N. & Sölkner, J. 2006. Comparison of production systems and selection criteria of Ankole cattle by breeders in Burundi, Rwanda, Tanzania and Uganda. Tropical Animal Health and Production, 38: 571581.CrossRefGoogle ScholarPubMed