Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T23:36:38.234Z Has data issue: false hasContentIssue false

Genetic variation of the reference population for quantitative trait loci research in South African Angora goats

Published online by Cambridge University Press:  20 November 2009

C. Visser*
Affiliation:
Department of Animal and Wildlife Sciences, University of Pretoria, Pretoria 0002, South Africa
E. van Marle-Koster
Affiliation:
Department of Animal and Wildlife Sciences, University of Pretoria, Pretoria 0002, South Africa
*
Correspondence to: C. Visser, Department of Animal and Wildlife Sciences, University of Pretoria, Pretoria 0002, South Africa. email: carina.visser@up.ac.za
Get access

Summary

The South African Angora goat industry makes the largest contribution to global mohair production. Mohair is a luxury fibre and production of a high quality clip is essential. For many years genetic improvement of Angoras in South Africa was based on quantitative selection. Genome mapping efforts provided new avenues for improvement and a quantitative trait loci (QTL) study was initiated to identify QTL associated with mohair traits. The aim of this study was to describe the genetic diversity of the reference population using the available stud and commercial herds with full phenotypic records. The most appropriate QTL design was identified based on the population structure with regard to the families and number of bucks available for breeding. Four herds, consisting of 1067 pure bred goats in 12 half-sib families, were included. Blood samples were obtained from the herds, 94 markers were tested and diversity parameters were estimated. The average number of alleles per marker varied between 5.4 and 7.2 amongst the herds, whereas the observed heterozygosity varied between 0.59 and 0.67. The genetic structure of these herds was found appropriate for use as a reference population as they showed sufficient genetic variability.

Résumé

L'industrie de la chèvre angora de l'Afrique du Sud apporte la plus grande contribution à la production mondiale de mohair. Le mohair est une fibre de luxe et la production d'une tonte de haute qualité est essentielle. Pendant de nombreuses années, l'amélioration génétique des chèvres angoras en Afrique du Sud était basée sur la sélection quantitative. Les activités de cartographie des génomes ont fourni de nouvelles voies pour l'amélioration et une étude sur le QTL a été lancée pour identifier le locus à effets quantitatifs associé aux caractères du mohair. Le but de cette étude était de décrire la diversité génétique de la population de référence en utilisant les troupeaux reproducteurs et commerciaux disponibles ayant des contrôles phénotypiques complets. Le plan de QTL le plus approprié a été identifié sur la base de la structure de la population considérant les familles et le nombre de boucs disponibles pour la sélection. Quatre troupeaux de 1067 chèvres de race pure dans 12 familles à descendance uniparentale ont été inclus. On a effectué des prises de sang sur les animaux des troupeaux, on a testé 94 marqueurs et estimé les paramètres de la diversité. Le nombre moyen d'allèles par marqueur variait entre 5,4 et 7,2 dans les troupeaux, tandis que l'hétérozygosité variait entre 0,59 et 0,67. La structure génétique de ces troupeaux a été considérée adéquate pour son utilisation en tant que population de référence car les troupeaux ont montré une variabilité génétique suffisante.

Resumen

La industria de la cabra Angora de Sudáfrica es la que representa el mayor porcentaje de producción de mohair a nivel mundial. El Mohair es una fibra considerada de lujo, y la producción donde se lleve a cabo una esquila de alta calidad es esencial. Durante muchos años la mejora genética de cabras Angora en Sudáfrica ha estado basada en la selección cuantitativa. Los esfuerzos llevados a cabo en relación con el mapeo genético abrieron nuevos caminos para mejorar, y se inició un estudio QTL para identificar el QTL asociado con los rasgos de mohair. El propósito de dicho estudio consistió en describir la diversidad genética de la población de referencia utilizando el semental disponible y rebaños comerciales con registros fenotípicos completos. El diseño más apropiado de QTL fue identificado en base a la estructura poblacional con respecto a las familias y al número de machos disponibles para la cría. Se incluyeron cuatro rebaños que sumaban 1067 cabras de raza pura en 12 familias de medios hermanos. Se obtuvieron muestras de sangre de los rebaños, se probaron 94 marcadores, y se estimaron parámetros de diversidad. El número promedio de alelos por marcador varió entre 5.4 y 7.2 entre los rebaños, mientras que la heterocigosidad observada varió entre 0.59 y 0.67. La estructura genética de estos rebaños se consideró apropiada para ser utilizada como población de referencia, dado que mostraba suficiente variabilidad genética.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, L. (2001) Genetic dissection of phenotypic diversity in farm animals. Nature Review of Genetics 2, 130138.CrossRefGoogle ScholarPubMed
Beuzen, N.D., Stear, M.J., and Chang, K.C. (2000) Molecular markers and their use in animal breeding. Veterinary Journal 160, 4552.CrossRefGoogle ScholarPubMed
Boichard, D., Fritz, S., Rossignol, M.N., Guillaume, F., Colleau, J.J., and Druet, T. (2006) Implementation of marker-assisted selection: Practical lessons from dairy cattle. Presented at the 8th World Congress on Genetics Applied to Livestock Production, 13–18 August, Belo Horizonte, MG, Brazil.Google Scholar
Bovenhuis, H. (2005) Power of a Daughter Design statistical program. Animal Breeding and Genetics Group, Wageningen UR, The Netherlands.Google Scholar
Casas, E., Lunstra, D.D., and Stone, R.T. (2004) Quantitative trait loci for male reproductive traits in beef cattle. Animal Genetics 35, 451453.CrossRefGoogle ScholarPubMed
Dalvit, C., Sacca, E., Cassandro, M., Gervaso, M., Pastore, E., and Piasentier, E. (2008) Genetic diversity and variability in Alpine sheep breeds. Small Ruminant Research 80, 4551.CrossRefGoogle Scholar
Goudet, J. (1995) FSTAT (version 2.9.3): A computer programme to calculate F-statistics. Journal of Heredity 8, 485486.CrossRefGoogle Scholar
Gour, D.S., Malik, G., Ahlawat, S.P.S., Pandey, A.K., Sharma, R., Gupta, N., Gupta, S.C., Bisen, P.S., and Kumar, D. (2006) Analysis of genetic structure of Jamunapari goats by microsatellite markers. Small Ruminant Research 66, 140149.CrossRefGoogle Scholar
Hartl, D.L. (1988) A Primer of Population Genetics (2nd ed.). Sinauer Associates, Inc. Publishers, Sunderland, MA, USA. p. 78.Google Scholar
Iamartino, D., Bruzzone, A., Lanza, A., Blasi, M., and Pilla, F. (2005) Genetic diversity of southern Italian goat populations assessed by microsatellite markers. Small Ruminant Research 57, 249255.CrossRefGoogle Scholar
Kumar, D., Dixit, S.P., Sharma, R., Pandey, A.K., Sirohi, G., Patel, A.K., Aggarwal, R.A.K., Verma, N.K., Gour, D.S., and Ahlawat, S.P.S. (2005) Population structure, genetic variation and management of Marwari goats. Small Ruminant Research 59, 4148.CrossRefGoogle Scholar
Li, J.Y., Chen, H., Lan, X.Y., Kong, X.J., and Min, L.J. (2008) Genetic diversity of five Chinese goat breeds assessed by microsatellite markers. Czech Journal of Animal Science 53, 315319.CrossRefGoogle Scholar
Loots, F. (2007) Seisoenoorsig. Angora Goat and Mohair Journal 50, 11.Google Scholar
Maddox, J.F., and Cockett, N.E. (2007) An update on sheep and goat linkage maps and other genomic resources. Small Ruminant Research 70, 420.CrossRefGoogle Scholar
Marshall, T.C., Slate, J., Kruuk, L.E.B., and Pemberton, J.M. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7, 639655.CrossRefGoogle ScholarPubMed
Martinez, A.M., Acosta, J., Vega-Pla, J.L., and Delgado, J.V. (2006) Analysis of the genetic structure of the Canary goat populations using microsatellites. Livestock Science 102, 140145.CrossRefGoogle Scholar
Park, S.D.E. (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. Phd thesis, University of Dublin.Google Scholar
Pritchard, J.K., Stephens, M., and Donnely, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945959.CrossRefGoogle ScholarPubMed
Purvis, I.W., and Jeffery, N. (2007) Genetics of fibre production in sheep and goats. Small Ruminant Research 70, 4247.CrossRefGoogle Scholar
Qi, Y., Luo, J., Han, X., Zhu, Y., Chen, C., Liu, J., and Sheng, H. (2009) Genetic diversity and relationships of 10 Chinese goat breeds in Middle and Western China. Small Ruminant Research 82, 8893.CrossRefGoogle Scholar
Snyman, M.A. (2002) Evaluation of a genetically fine mohair producing herd. Small Ruminant Research 43, 105113.CrossRefGoogle Scholar
Snyman, M.A., and Olivier, J.J. (1996) Genetic parameters for body weight, fleece weight and fibre diameter in South African Angora goats. Livestock Production Science 47, 16.CrossRefGoogle Scholar
Sollero, B.P., Paiva, S.R., Faria, D.A., Guimaraes, S.E.F., Castro, S.T.R., Egito, A.A., Albuquerque, M.S.M., Piovezan, U., Bertani, G.R., and Mariante, A.d.S. (2009) Genetic diversity of Brazilian pig breeds evidenced by microsatellite markers. Livestock Science 123, 815.CrossRefGoogle Scholar
Sonstegard, T.S., van Tassel, C.P., and Ashwell, M.S. (2001) Dairy cattle genomics: Tools to accelerate genetic improvement? Journal of Animal Science 79 (Suppl.), E307E315.CrossRefGoogle Scholar
Traore, A., Alvarez, I., Tamboura, H.H., Fernandez, I., Kabore, A., Royo, L.J., Gutierrez, J.P., Sangare, M., Ouedraogo-Sanou, G., Toguyeni, A., Sawadogo, L., and Goyache, F. (2009) Genetic characterization of Burkino Faso goats using microsatellite polymorphism. Livestock Science 123, 322328.CrossRefGoogle Scholar
Tuiskula-Haavisto, M., Honkatukia, M., Vilkki, J., de Koning, D.J., Schulman, N.F., and Maki-Tanila, A. (2002) Mapping of quantitative trait loci affecting quality and production traits in egg layers. Poultry Science 81, 919927.CrossRefGoogle ScholarPubMed
Weller, J.I. (2001) Quantitative Trait Loci Analysis in Animals. CABI Publishing, Wallingford, UK.CrossRefGoogle Scholar
Wright, S. (1978) Evolution and the Genetics of Populations. Variability within and among Natural Populations (Vol. 4). University of Chicago Press, Chicago.Google Scholar