Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T16:04:47.329Z Has data issue: false hasContentIssue false

Chromosomal segments underlying quantitative trait loci for mohair production in Angora goats

Published online by Cambridge University Press:  20 November 2009

E.M. Cano*
Affiliation:
INTA, Instituto de Genética ‘Ewald A. Favret’, CICVyA, cc 25, B1712WAA-Castelar-Buenos Aires, Argentina
S. Debenedetti
Affiliation:
INTA, Estación Experimental Agropecuaria Bariloche, cc 277, S.C. Bariloche, 8400, Río Negro, Argentina
M. Abad
Affiliation:
INTA, Estación Experimental Agropecuaria Bariloche, cc 277, S.C. Bariloche, 8400, Río Negro, Argentina
D. Allain
Affiliation:
INRA, Station d'Amélioration Génétique des Animaux, BP27, 31326 Castanet Tolosan, France
H.R. Taddeo
Affiliation:
INTA, Estación Experimental Agropecuaria Bariloche, cc 277, S.C. Bariloche, 8400, Río Negro, Argentina
M.A. Poli
Affiliation:
INTA, Instituto de Genética ‘Ewald A. Favret’, CICVyA, cc 25, B1712WAA-Castelar-Buenos Aires, Argentina
*
Correspondence to: E.M. Cano, INTA, Instituto de Genética ‘Ewald A. Favret’, CICVyA, cc 25, B1712WAA-Castelar-Buenos Aires, Argentina. email: mcano@cnia.inta.gov.ar
Get access

Summary

This study reports the results obtained in the search of chromosomal regions affecting fleece traits in a population of Angora goats in the Argentinean Patagonia. Six hundred thirty-four offspring from 14 parental half-sib families were used. Nine phenotypic fleece traits were recorded at 4 and 11 months of age. A genome examination using 85 informative molecular markers was conducted. A linkage analysis was performed using a regression interval analysis. Our study identified 10 genomic regions affecting the average fibre diameter, coefficient of variation of the average fibre diameter, percentage of fibres with diameters over 30 µm, greasy fleece weight, staple length, average curvature of fibres, percentage of continuous medullated fibres and percentage of kemp fibres located on five goat chromosomes (1, 2, 5, 13 and 19). These results show that the average size of the quantitative trait loci effect was 1.6 phenotypic standard deviations for different traits and families. The aims of quantitative trait loci detection is the potential use of these molecular markers to increase accuracy in predicting the genetic merit of breeding and its implementation in animal breeding schemes through marker-assisted selection.

Résumé

Dans cette étude, on signale les résultats obtenus dans la recherche des régions chromosomiques relatives aux caractéristiques de la toison des chèvres angora dans la Patagonie argentine. On a utilisé 634 descendants de 14 familles à descendance uniparentale et enregistré neuf caractères phénotypiques de la toison à 4 et 11 mois. Un examen du génome a été entrepris en utilisant 85 marqueurs moléculaires informatifs. L'analyse du groupe de liaison a été effectuée en utilisant une analyse de l'intervalle de régression. Notre étude a identifié 10 régions génomiques qui affectent le diamètre moyen de la fibre, le coefficient de variation du diamètre moyen de la fibre, le pourcentage de fibre ayant un diamètre supérieur à 30 µm, le poids de la laine en suint, la longueur de la fibre, la courbure moyenne de la fibre, le pourcentage de fibres médullaires continues et le pourcentage de fibre de jarre située sur cinq chromosomes de chèvre (1, 2, 5, 13 et 19). Ces résultats indiquent que la taille moyenne de l'effet QTL était des déviations phénotypiques standard de 1,6 pour les différents caractères et familles. Le but de la détection des QTL est l'utilisation potentielle de ces marqueurs moléculaires en vue d'accroître la précision dans la prévision de la valeur génétique de la sélection et sa mise en œuvre dans les programmes de sélection animale par le biais de la sélection assistée par marqueurs.

Resumen

En este estudio, informamos sobre los resultados obtenidos en la búsqueda de regiones cromosómicas que afectan a las características del vellón en una población de cabras de Angora en la Patagonia Argentina. Se utilizaron seiscientos treinta y cuatro crías de 14 familias parentales de medios hermanos. A la edad de 4 meses y de 11 meses, se registraron nueve rasgos fenotípicos en relación al vellón. Se realizó una inspección del genoma utilizando 85 marcadores moleculares informativos. Se llevó a cabo un análisis de ligamiento utilizando un análisis de regresión de intervalo. Nuestro estudio identificó diez regiones genómicas que afectaban al diámetro promedio de fibra, coeficiente de variación de diámetro promedio de fibra, porcentaje de fibra con diámetro superior a 30 µm, peso de lana suarda, longitud de la fibra, valor promedio de la curvatura de la fibra, porcentaje de fibras meduladas continuas y porcentaje de fibras kemp localizadas en cinco cromosomas caprinos (1, 2, 5, 13 y 19). Estos resultados indican que el tamaño promedio del efecto QTL era de 1.6 desviaciones estándar fenotípicas para diferentes rasgos y familias. La detección de QTL tiene como propósito el uso potencial de estos marcadores moleculares para aumentar la precisión a la hora de pronosticar el mérito genético en la crianza, y su utilización en proyectos de crianza de animales a través de la selección asistida por marcadores.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadi, M.R., Askari, N., Baghizadeh, A., and Esmailizabeth, A.K. (2009) A directed search around caprine candidate loci provided evidence for microsatellites linkage to growth and cashmere yield in Rayini goats. Small Ruminant Research 81, 146151.CrossRefGoogle Scholar
Allain, D., Lantier, I., Elsen, J.M., François, D., Brunel, J.C., Weisbecker, J.L., Schibler, L., Vaiman, D., Cribiu, E., Gautier, A., Berthon, P., and Lantier, F. (1998) A design aiming at detecting QTL controlling wool traits and other traits in the INRA 401 sheep line. Presented at the 6th World Congress on Genetics Applied to Livestock Production, 11–16 January, Armidale, NSW, Australia, pp. 5154.Google Scholar
Allain, D., Schibler, L., Mura, L., Barillet, F., Sechi, T., Rupp, R., Casu, S., Cribiu, E., and Carta, A. (2006) QTL detection with DNA markers for wool traits in a sheep backcross Sarda × Lacune resource population. Presented at the 8th World Congress on Genetics Applied to Livestock Production, 13–18 August, Belo Horizonte, MG, Brasil, communication 05-07.Google Scholar
Arrigo, J., and Sapag, A. (2007) El Programa Mohair, una red de organizaciones de productores y el estado para la producción y el desarrollo. Presented at the Vo Congreso Latinoamericano de Especialistas en Pequeños Rumiantes y Camélidos Sudamericanos, 2–4 May, Mendoza, Argentina.Google Scholar
Beh, K.J., Callaghan, M.J., Leish, Z., Hulme, D.J., Lenane, I., and Maddox, J.F. (2001) A genome scan for QTL affecting fleece and wool traits in Merino sheep. International Journal of Sheep Wool Science 49, 8897.Google Scholar
Bidinost, F., Roldán, D.L., Dodero, A.M., Cano, E.M., Taddeo, H.R., Mueller, J.P., and Poli, M.A. (2008) Wool quantitative trait loci in Merino sheep. Small Ruminant Research 74, 113118.CrossRefGoogle Scholar
Cano, E.M., Daverio, S., Cáceres, M., Debenedetti, S., Costoya, S., Abad, M., Allain, D., Taddeo, H., and Poli, M.A. (2009) Detection of QTL affecting fleece traits on CHI19 in Angora goats. Tropical and Subtropical Agroecosystems Journal 11, 189191.Google Scholar
Cano, E.M., Marrube, G., Roldan, D.L., Abad, M., Allain, D., Vaiman, D., Taddeo, H., and Poli, M. (2007) QTL affecting fleece traits in Angora goats. Small Ruminant Research 71, 158164.CrossRefGoogle Scholar
Churchill, G.A., and Doerge, R.W. (1994) Empirical threshold values for quantitative trait mapping. Genetics 138, 963971.CrossRefGoogle ScholarPubMed
Crawford, A.M., Dodds, K.G., Pierson, C.A., Ede, A.J., Montgomery, G.W., Garmonsway, H.G., Beattie, A.E., Davies, K., Maddox, J.F., Kappes, S.W., Stone, R.T., Nguyen, T.C., Penty, J.M., Lord, E.A., Broom, J.E., Buitkamp, J., Schwenger, W., and Epplen, J.T. (1995) An autosomal genetic linkage map of the sheep genome. Genetics 140, 703724.CrossRefGoogle ScholarPubMed
Falconer, D.S., and Mackay, T.F.C. (1996) Introduction to Quantitative Genetics (4th ed.). Longman, New York.Google Scholar
Fries, R., Threadgill, D.W., Hediger, R., Gunawardana, A., Blessing, M., Jorcano, J.L., Stranzinger, G., and Womarck, J.E. (1991) Mapping of bovine cytokeratin sequences to four different sites on three chromosomes. Cytogenetics and Cell Genetics 57, 135141.CrossRefGoogle ScholarPubMed
Geldermann, H. (1975) Investigation on inheritance of quantitative character in animals by gene markers I. Methods. Theoretical and Applied Genetics 46, 319330.CrossRefGoogle ScholarPubMed
IWTO-8-97 (1997) Method of determining fibre diameter distribution parameters and percentage of medullated fibres in wool and other animal fibres by projection microscope. The International Wool Secretariat, London.Google Scholar
IWTO-12-03 (2003) Measurement of the mean and distribution of fibre diameter using the Sirolan Laserscan Fibre Diameter Analyser. Raw Wool Services Department, West Yorkshire, UK.Google Scholar
Knott, S.A., Elsen, J.M., and Haley, C.S. (1996) Methods for multiple markers mapping of quantitative trait loci in half-sibs population. Theoretical and Applied Genetics 93, 7180.CrossRefGoogle Scholar
Lander, E.S., and Botstein, D. (1989) Mapping Mendelian factor underlying quantitative traits using RFLP linkage map. Genetics 121, 185199.CrossRefGoogle Scholar
Maddox, J.F. (2005) A presentation of the differences between the sheep and goat genetic maps. Genetics, Selection, Evolution 37, S1S10.CrossRefGoogle ScholarPubMed
Marrube, G., Cano, E.M., Roldán, D.L., Bidinost, F., Abad, M., Allain, D., Vaiman, D., Taddeo, H., and Poli, M.A. (2007) QTL affecting conformation traits in Angora goats. Small Ruminant Research 71, 170178.CrossRefGoogle Scholar
McLaren, R.J., Roger, G.R., Davies, K.P., Maddox, J.F., and Montgomery, G.W. (1997) Linkage mapping of wood keratin and keratin-associated protein genes in sheep. Mammalian Genome 8, 938940.CrossRefGoogle Scholar
Parsons, Y.M., Cooper, D.W., and Piper, L.R. (1994) Evidence of linkage between high-glycine-tyrosine keratin gene loci and wool fiber diameter in a merino half-sib family. Animal Genetics 25, 105108.CrossRefGoogle Scholar
Pinton, P., Schibler, L., Cribiu, E., Gellin, J., and Yerle, M. (2000). Localization of 113 anchor loci in pigs: Improvement of the comparative map for humans, pigs, and goats. Mammalian Genome 11, 306315.CrossRefGoogle ScholarPubMed
Ponz, R., Moreno, C., Allain, D., Elsen, J.M., Lantier, F., Lantier, I., Brunel, J.C., and Pérez-Enciso, M. (2001) Assessment of genetic variation explained by markers for wool traits in sheep via a segment mapping approach. Mammalian Genome 12, 569572.CrossRefGoogle Scholar
Purvis, I.W., and Franklin, I.R. (2005) Major genes and QTL influencing wool production and quality: A review. Genetics, Selection, Evolution 37, S97S107.CrossRefGoogle ScholarPubMed
Rogers, G.R., Hickford, G.H., and Bickerstaffe, R. (1994) Polymorphism in two genes for B2 sulfur proteins of wool. Animal Genetics 25, 407415.CrossRefGoogle ScholarPubMed
Schibler, L., Vaiman, D., Oustry, A., Giraud-Delville, C., and Cribiu, E.P. 1998. Comparative gene mapping: A fine-scale survey of chromosome rearrangements between ruminants and humans. Genome Research 8, 901915.CrossRefGoogle ScholarPubMed
Seaton, G., Haley, C.S., Knott, S., Kearsey, M., and Visscher, P. (2002) QTL Express: Mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18, 339340.CrossRefGoogle ScholarPubMed