Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T23:49:13.774Z Has data issue: false hasContentIssue false

Genetics of disease resistance in Bos taurus cattle

Published online by Cambridge University Press:  01 August 2011

C.A. Morris
Affiliation:
AgResearch, Ruakura Agricultural Research Centre PB 3123, Hamilton, New Zealand
Get access

Summary

This review summarises evidence for genetic variation of Bos taurus cattle to diseases encountered under temperate conditions, including internal and external parasitism, susceptibility to mycotoxic diseases (tall fescue toxicosis, facial eczema, ryegrass staggers), mastitis, ketosis, pasture bloat, leukosis, tuberculosis, foot and mouth, brucellosis and BSE. Averaging mean heritability estimates reviewed from 8 diseases (weighted equally) gave a value of 0.21, indicating that measurable genetic variation for disease traits in Bos taurus cattle is somewhat less than that for production traits, such as milk yield or body weight. Many estimates, however, have high standard errors, and there could be an upward bias resulting from non-reporting of zero or non-significant estimates.

Few single-trait selection experiments have been conducted to study the genetics of disease resistance traits in cattle. For the disease traits where selection is being applied extensively, index selection for improved disease resistance and increased production is more common than single-trait selection. Results from a long-term (25 year) divergent selection experiment with resistance/susceptibility to pasture bloat in cattle in New Zealand are reviewed. Four single-year experiments comparing progeny of ‘high’ versus ‘low’ sires for resistance to disease are also reviewed, one in Australia studying faecal nematode egg counts, one in the USA involving the mycotoxic disease, tall fescue toxicosis, a third in New Zealand involving the mycotoxic disease, facial eczema, and a fourth in the USA involving Brucella abortus.

Resumen

Esta revisión resume la variedad genética evidente en Bos taurus a las enfermedad encontradas en condiciones templadas, incluido el parasitismo interno y externo, la susceptibilidad a las enfermedades micotóxicas (festuca cañosa, excema facial, tetania del raygras), la mastitis, la cetosis, el timpanismo pratense, la leucosis, la tuberculosis, la brucelosis y la BSE. La media de heredabilidad estimada sobre 8 enfermedades nos da un valor de 0,21, lo que indica que la variación genética medible en cuanto a enfermedades en el caso de Bos taurus es algo inferior con respecto a la producción, tal como el rendimiento en leche o rendimiento corporal. Varias estimaciones poseen sin embargo una elevada desviación estándar, y puede haber una ulterior desviación debida a la omisión del zero o de las estimaciones no significativas.

Algunos experimentos sobre selección de rasgos simples han conducido llevado a estudiar la genética de los rasgos de resistencia a enfermedades en bovinos. Para los caracteres sobre enfermedades, a los que se aplica una selección extensiva, el Indice de selección para mejorar la resistencia a la enfermedad y aumentar la producción es más común que en el caso de la selección de un rasgo simple. Se analizan aquí los resultados obtenidos a largo plazo (25 años) y que muestran una divergencia entre el experimento de selección y la resistencia/susceptibilidad al timpanismo pratense en los bovinos de Nueva Zelanda. Quatro experimentos de un año comparan la descendencia de “arriba” hacia “abajo” de los machos en cuanto a la resistencia a enfermedades; uno en Australia realiza un conteo de las larvas de los nematodos fecales; uno en Estados Unidos sobre la enfermedad micotóxica, un tercero en Nueva Zelanda referido a enfermedad micotóxica y excema facial; y el cuarto en Estados Unidos sobre Brucella abortus.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, L.G, Barthel, R, Feng, J., Qureshi, T, Piedrahita, J. & Templeton, J.W. 1996. Genes associated with innate killing of Brucella abortus and Mycobacterium bovis by macrophages from genetically resistant cattle. Veterinary Immunology and Immunopathology, 54:135(Abstract).CrossRefGoogle Scholar
Barlow, R. & Piper, L.R. 1985. Genetic analyses of nematode egg counts in Hereford and crossbred Hereford cattle in the subtropics of New South Wales. Livestock Production Science, 12:7984.CrossRefGoogle Scholar
Biozzi, G., Mouton, D., Heumann, A.M. & Bouthillier, Y. 1982. Genetic regulation of immunoresponsiveness in relation to resistance against infectious diseases. Proceedings of the 2nd World Congress on Genetics Applied to Livestock Production, 5:150163.Google Scholar
Davis, G.P. 1993. Genetic parameters for tropical beef cattle in Northern Australia: a review. Australian Journal of Agricultural Research, 44:179198.CrossRefGoogle Scholar
Dicker, R.W. & Barlow, R. 1979. Measurement of bush tick infestation in Hereford and first cross heifers. Proceedings of the Australian Association of Animal Breeding and Genetics 1:169171.Google Scholar
Esdale, C.R., Leutton, R.D., OíRourke, P.K. & Rudder, T.H. 1986. The effect of sire selection for helminth egg counts on progeny helminth egg counts and live weight. Proceedings of the Australian Society of Animal Production, 16:199202.Google Scholar
Frisch, J.E. 1994. Identification of a major gene for resistance to cattle ticks. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, 20:293295.Google Scholar
Greenough, P.R. 1991. A review of factors predisposing to lameness in cattle. In: Breeding for disease resistance in farm animals. Eds. Owen, J.B. & Axford, R.F.E., CAB International, Wallingford, U.K.: 371393.Google Scholar
Goldmann, W., Hunter, N., Martin, T., Dawson, M. & Hope, J. 1991. Different forms of the PrP gene have five or six copies of a short, G-C-rich element within the protein-coding exon. Journal of General Virology 72:201204.CrossRefGoogle ScholarPubMed
Gould, L.S. & Hohenboken, W.D. 1993. Differences between progeny of beef sires in susceptibility to tall fescue toxicosis. Journal of Animal Science, 71:30253032.CrossRefGoogle Scholar
Hohenboken, W.D., Berggren-Thomas, P.L., Beal, W.E. & McClure, W.H. 1991. Variation among Angus cows in response to endophyte-infected fescue seed in the diet, as related to their past calf production. Journal of Animal Science, 69:8590.CrossRefGoogle ScholarPubMed
Hohenboken, W.D & Blodgett, D.J. 1997. Growth and physiological responses toxicosis in lines of mice selected for resistance or susceptibility to endophyte-infected tall fescue in the diet. Journal of Animal Science, 75:21652173.CrossRefGoogle ScholarPubMed
Kenyon, S.J. & Piper, C.E. 1977. Properties of density gradient-fractionated peripheral blood leukocytes from cattle infected with bovine leukaemia virus. Infection and Immunity, 16:898903.CrossRefGoogle Scholar
Kerr, R.J., Frisch, J.E. & Kinghorn, B. 1994. Evidence for a major gene for tick resistance in cattle. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, 20:265268.Google Scholar
Kulikova, S.G. & Petukhov, V.L. 1994. Genetic correlation of cattle resistance to tuberculosis and leucosis. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, 20: 300301.Google Scholar
Leighton, E.A., Murrell, K.D. & Gasbarre, L.C. 1989. Evidence for genetic control of nematode egg-shedding rates in calves. Journal of Parasitology, 75:498504.CrossRefGoogle ScholarPubMed
Lewin, H.A. & Bernoco, D. 1986. Evidence of BoLA-linked resistance and susceptibility to subclinical progression of bovine leukaemia virus infection. Animal Genetics, 17:197207.CrossRefGoogle ScholarPubMed
Lindahl, I.L., Davis, R.E., Jacobson, D.R. & Shaw, J.C. 1957. Feedlot bloat studies. I. Animal and dietary factors. Journal of Animal Science, 16:165178.CrossRefGoogle Scholar
Lipsey, R.J., Vogt, D.W., Garner, G.Miles, L.L. & Cornell, C.N. 1992. Rectal temperature changes of heat and endophyte stressed calves produced by tolerant or susceptible sires. Journal of Animal Science, 70 (Suppl. l):188.Google Scholar
Miller, R.H. 1982. Genetics of resistance to mastitis. Proceedings of the 2nd World Congress on Genetics Applied to Livestock Production, 5:186198.Google Scholar
Morris, C.A. 1998. Responses to selection for disease resistance in sheep and cattle in New Zealand and Australia. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, 27:295302.Google Scholar
Morris, C.A., Burton, L.J., Towers, N.R., Cullen, N.G., Rendel, J.M. & Johnson, D.L. 1998a. Genetics of susceptibility to facial eczema in Friesian and Jersey cattle. New Zealand Journal of Agricultural Research (in press).CrossRefGoogle Scholar
Morris, C.A., Cockrem, F.R.M., Carruthers, V.R., McIntosh, J.T. & Cullen, N.G. 1991a. Response to divergent selection for bloat susceptibility in dairy cows. New Zealand Journal of Agricultural Research, 34:7583.CrossRefGoogle Scholar
Morris, C.A., Cullen, N.G. & Geertsema, H.G. 1997a. Genetic studies of bloat susceptibility in cattle. Proceedings of the New Zealand Society of Animal Production, 57:1921.Google Scholar
Morris, C.A., Jones, K.R., Wilson, J.A. & Watson, T.G. 1992. Comparison of the Brahman and Friesian breeds as sires for beef production in New Zealand. New Zealand Journal of Agricultural Research, 35:277286.CrossRefGoogle Scholar
Morris, C.A., Towers, N.R., Smith, B.L. & Southey, B.R. 1991b. Progeny testing bulls for susceptibility to facial eczema. New Zealand Journal of Agricultural Research, 34:413417CrossRefGoogle Scholar
Morris, C.A., Towers, N.R., Tempero, H.J, Cox, N.R. & Henderson, H.V. 1990. Facial eczema in Jersey cattle: heritability and correlation with production. Proceedings of the New Zealand Society of Animal Production, 50:255259.Google Scholar
Morris, C.A., Towers, N.R., Amyes, N.C. & Wheeler, M. 1998b. Preliminary results of selecting sheep for resistance or susceptibility to ryegrass staggers. Proceedings of the New Zealand Society of Animal Production, 58: (in press).Google Scholar
Morris, C.A., Towers, N.R., Wheeler, M. & Wesselink, C. 1995a. Selection for or against facial eczema susceptibility in Romney sheep, as monitored by serum concentrations of a liver enzyme. New Zealand Journal of Agricultural Research, 38:211219.CrossRefGoogle Scholar
Morris, C.A., Vlassoff, A., Bisset, S.A., Baker, R.L., West, C.J. & Hurford, A.P. 1997b. Responses of Romney sheep to selection for resistance or susceptibility to nematode infection. Animal Science, 64:319329.CrossRefGoogle Scholar
Morris, C.A., Watson, T.G., Bisset, S.A., Vlassoff, A. & Douch, P.G.C. 1995b. Breeding sheep in New Zealand for resistance or resilience to nematode parasites. In: Breeding for resistance to infectious diseases in small ruminants. Eds. Gray, G.D., Woolaston, R.R. & Eaton, B.T., published by the Australian Centre for International Agricultural Research: 7798.Google Scholar
Morrison, B.L, Goetsch, A.L., Piper, E.L., Murphey, G.E., Landis, K.M., Johnson, Z.B., Hardin, A.C. & Hall, K.L. 1988. Performance of English or Brahman crossbred steers grazing endophyte-infected or non-infected fescue paddocks. Journal of Animal Science, 66 (Suppl. 1): 56(Abstract).Google Scholar
Petukhov, V.L., Kochnev, N.N., Panov, B.L., Korotkevich, O.S., Kulikova, S.G. & Marenkov, V.G. 1998. Genetics of cattle resistance to tuberculosis. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, 27:365366.Google Scholar
Phua, S.W, Dodds, K.G, Morris, C.A, Towers, N.R. & Crawford, A.M. 1998. Antioxidant enzymes as candidate genes for disease resistance in sheep facial eczema. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, 27:273276.Google Scholar
Powell, R.L., Van Raden, P.M. & Wiggans, G.R. 1997 Relationship between United States and Canadian genetic evaluations of longevity and somatic cell score. Journal of Dairy Science 80:18071812.CrossRefGoogle ScholarPubMed
Prat, J. 1952. Sur la transmission héréditaire naturelle contre la fièvre aphteuse chez certains bovins. Bulletin Société des Sciences Vétérinaires de Lyon, 297302.Google Scholar
Rajan, G.H, Morris, C.A, Carruthers, V.R., Wilkins, R.J. & Wheeler, T.T. 1996. The relative abundance of a salivary protein, bSP30, is correlated with susceptibility to bloat in cattle herds selected for high or low bloat susceptibility. Animal Genetics, 27:407414.CrossRefGoogle ScholarPubMed
Rowlands, G.J. 1974. A possible use of blood analysis in the selection of beef animals with superior growth potential. Proceedings of the 1st World Congress on Genetics Applied to Livestock Production, 3:783787.Google Scholar
Simianer, H., Solbu, H. & Schaeffer, L.R. 1991. Estimated genetic correlations between disease and yield traits in dairy cattle. Journal of Dairy Science, 74:43584365.CrossRefGoogle ScholarPubMed
Spooner, R.L., Bradley, J.S. & Young, G.B. 1975. Genetics and disease in domestic animals with particular reference to dairy cattle. Veterinary Record, 97: 125130.CrossRefGoogle ScholarPubMed
Stuedemann, J.A. & Hoveland, C.S. 1988. Fescue endophyte: history and impact on animal agriculture. Journal of Production Agriculture, 1:3944.CrossRefGoogle Scholar
Templeton, J.W., Estes, D.M., Price, R.E., Smith, R. & Adams, L.G. 1990. Immunogenetics of natural resistance to bovine brucellosis. Proceedings of the 4th World Congress on Genetics Applied to Livestock Production, 16:396399.Google Scholar
Templeton, J.W., Smith, R. & Adams, G. 1988. Natural disease resistance in domestic animals. Journal of the American Veterinary Medical Association, 192:13061315.Google ScholarPubMed
Wagner, C.A. & Hohenhoken, W.D. 1998. Reproduction, when fed toxic or non-toxic diets during continuous cohabitation, of mice selected for response to fescue toxicosis. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, 27: 307310.Google Scholar
Woolaston, R.R. & Eady, S.J. 1995. Australian research on genetic resistance to nematode parasites. In: Breeding for resistance to infectious diseases in small ruminants. Eds. Gray, G.D., Woolaston, R.R. & Eaton, B.T., published by the Australian Centre for International Agricultural Research: 5375.Google Scholar