Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T21:26:24.379Z Has data issue: false hasContentIssue false

One-Sample Tests in Regional Archaeological Analysis: New Possibilities through Computer Technology

Published online by Cambridge University Press:  20 January 2017

Kenneth L. Kvamme*
Affiliation:
Arizona State Museum, University of Arizona, Tucson, AZ 85721

Abstract

Archaeologists commonly employ two-sample statistical tests in regional locational analyses that compare environmental measurements obtained at site locations against measurements taken at random locations from the background environment. One-sample tests that compare a site sample against a background standard are conceptually and statistically superior, but have been difficult to implement for continuous data types. This situation now is changed owing to a relatively new computer technology known as Geographic Information Systems (GIS). GIS can provide a complete description of the nature of the background environment of entire regions for categorical and continuous data types, thereby allowing the ready application of one-sample testing strategies. Examples of several GIS-based one-sample tests are given using data from east-central Arizona. Such conventional tests only should be applied, however, when the observations can be shown to be statistically independent through tests for spatial autocorrelation.

Résumé

Résumé

Arqueólogos comunmente emplean pruebas estadísticas de dos muestras en los análisis de localizatión regional que comparan medidas medioambientales obtenidas en localidades de sitios, con medidas tornados en localidades aleatorias en el medioambiente de fondo. Pruebas de una muestra que comparan la muestra de un sitio con un estándar de fondo son conceptualmente y estadisticamente superiores, pero dificiles de implementar para tipos de datos continuos. Esta situación hoy ha cambiado gracias a una tecnología de computacion relativamente nueva, conocida como “Sistemas de Information Geogrdfica” (GIS). GISprovee una descriptión completa de la naturaleza del medioambiente defondo en regiones enteraspara tipos de datos categoricos y continuos, permitiendo así la aplicación inmediata de estrategias de prueba de una muestra. Aqui se dan ejemplos de varias pruebas de una muestra basada en GIS, usando datos de una región de estudio en el centro-este de Arizona. Sin embargo, estas pruebas convencionales deben ser aplicadas solamente cuando pruebas de autocorrelatión espacial demuestran que las observaciones son estadisticamente independientes.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Attwell, M. R., and Fletcher, M. 1987 An Analytical Technique for Investigating Spatial Relationships. Journal of Archaeological Science 14 : 111.CrossRefGoogle Scholar
Burrough, P. A. 1986 Principles of Geographical Information Systems for Land Resource Assessment. Clarendon Press, Oxford, England.Google Scholar
Cliff, A. D., and Ord, J. K. 1973 Spatial Autocorrelation. Pion, London.Google Scholar
Cliff, A. D., and Ord, J. K. 1975 The Comparison of Means When Samples Consist of Spatially Autocorrelated Observations. Environment and Planning A 7 : 725734.Google Scholar
Cochran, W. 1976 Sampling Techniques. 3rd ed. John Wiley, New York.Google Scholar
Davey, P. J. 1971 The Distribution of Later Bronze Age Metalwork from Lincolnshire. Proceedings of the Prehistoric Society 37 : 96111. London.Google Scholar
Green, E. L. 1973 Location Analysis of Prehistoric Maya Sites in Northern British Honduras. American Antiquity 38 : 279293.Google Scholar
Haggett, P., Cliff, A. D., and Frey, A. 1977 Locational Methods. 2nd ed. John Wiley, New York.Google Scholar
Hays, W. L. 1988 Statistics. 4th ed. Holt, Rinehart and Winston, New York.Google Scholar
Hodder, I. R., and Orton, C. 1976 Spatial Analysis in Archaeology. Cambridge University Press, Cambridge, England.Google Scholar
Judge, W. J. 1973 Paleoindian Occupation of the Central Rio Grande Valley, New Mexico. University of New Mexico Press, Albuquerque.Google Scholar
Kellogg, D. C. 1987 Statistical Relevance and Site Locational Data. American Antiquity 52 : 143150.Google Scholar
Kvamme, K. L. 1985 Determining Empirical Relationships Between the Natural Environment and Prehistoric Site Locations : A Hunter-Gatherer Example. In For Concordance in Archaeological Analysis : Bridging Data Structure, Quantitative Technique, and Theory, edited by Carr, C., pp. 208238. Westport, Kansas City.Google Scholar
Kvamme, K. L. 1988 Development and Testing of Quantitative Models. In Quantifying the Present and Predicting the Past : Theory, Method, and Application of Archaeological Predictive Modeling, edited by Judge, W. J. and Sebastian, L., pp. 325428. U. S. Government Printing Office, Washington D. C.Google Scholar
Kvamme, K. L. 1989 Geographic Information Systems in Regional Archaeological Research and Data Management. In Archaeological Method and Theory, vol. 1, edited by Schiffer, M. B., pp. 139202. University of Arizona Press, Tucson.Google Scholar
Kvamme, K. L. 1990a Spatial Autocorrelation and the Classic Maya Collapse Revisited : Refined Techniques and New Conclusions. Journal of Archaeological Science 17 : 197207.CrossRefGoogle Scholar
Kvamme, K. L. 1990b GIS Algorithms and Their Effects on Regional Archaeological Analyses. In Interpreting Space : GIS and Archaeology, edited by Allen, K. M., Green, S., and Zubrow, E.. Taylor and Francis, London, in press.Google Scholar
Kvamme, K. L., and Jochim, M. A. 1989 The Environmental Basis of Mesolithic Settlement. In The Mesolithic in Europe : Papers Presented at the Third International Symposium, edited by Bonsall, C., pp. 112. John Donald, Edinburgh, Scotland.Google Scholar
Kvamme, K. L., and Kohler, T. A. 1988 Geographic Information Systems : Technical Aids for Data Collection, Analysis, and Display. In Quantifying the Present and Predicting the Past : Theory, Method, and Application of Archaeological Predictive Modeling, edited by Judge, W. J. and Sebastian, L., pp. 493547. U. S. Government Printing Office, Washington D. C. Google Scholar
Lafferty, R. H. Ill, 1981 Distribution of Archaeological Materials. In Settlement Predictions in Sparta : A Locational Analysis and Cultural Resource Assessment in the Uplands of Calhoun County, Arkansas, edited by Lafferty III, R. H., Otinger, J. L., Schultz, S. C., Limp, W. F., Watkins, B., and Jones, R. D., pp. 163206. Research Series 14. Arkansas Archaeological Survey, Fayetteville.Google Scholar
Larralde, S. L., and Chandler, S. M. 1981 Archaeological Inventory in the Seep Ridge Cultural Study Tract, Uinta County, Northeastern Utah. Cultural Resource Series 11. Bureau of Land Management, Salt Lake City. Google Scholar
Limp, W. F., Parker, S., Farley, J. A., Waddell, D. B., and Johnson, I. 1990 Integrated Tools for Cultural Resource Management. U. S. Army Construction Engineering Research Laboratories Technical Report. Champaign, Illinois.Google Scholar
Longacre, W. A., Graves, M. W., and Holbrook, S. J. (editors) 1982 Multidisciplinary Research at Grasshopper Pueblo, Arizona. Anthropological Papers No. 40. University of Arizona Press, Tucson.Google Scholar
Moran, P. A. P. 1948 The Interpretation of Statistical Maps. Journal of the Royal Statistical Society, Series B 10 : 243251.Google Scholar
Parker, S. C. 1985 Predictive Modeling of Site Settlement Systems Using Multivariate Logistics. In For Concordance in Archaeological Analysis : Bridging Data Structure, Quantitative Technique, and Theory, edited by Carr, C., pp. 173207. Westport, Kansas City.Google Scholar
Plog, F. T., and Hill, J. N. 1971 Explaining Variability in the Distribution of Prehistoric Population Aggregates. In The Distribution of Prehistoric Population Aggregates, edited by Gumerman, G. J., pp. 736. Anthropological Reports No. 1. Prescott College, Prescott, Arizona.Google Scholar
Reid, J. J. (editor) 1974 Behavioral Archaeology at the Grasshopper Ruin. The Kiva vol. 40. Arizona Archaeological and Historical Society, Tucson.Google Scholar
Roper, D. C. 1979 Archaeological Survey and Settlement Pattern Models in Central Illinois. Scientific Papers No. 16. Illinois State Museum, Springfield.Google Scholar
Rose, M. R., and Altschul, J. H. 1988 An Overview of Statistical Method and Theory for Quantitative Model Building. In Quantifying the Present and Predicting the Past : Theory, Method, and Application of Archaeological Predictive Modeling, edited by Judge, W. J. and Sebastian, L., pp. 173256. U. S. Government Printing Office, Washington D. C. Google Scholar
Shermer, S. J., and Tiffany, J. A. 1985 Environmental Variables as Factors in Site Location : An Example from the Upper Midwest. Midcontinental Journal of Archaeology 10 : 215240.Google Scholar
Shennan, S. 1988 Quantifying Archaeology. Academic Press, New York.Google Scholar
Thomas, D. H. 1986 Refiguring Anthropology : First Principles of Probability and Statistics. Waveland Press, Prospect Heights, Illinois.Google Scholar
Thomas, D. H., and Bettinger, R. L. 1976 Prehistoric Pinon Ecotone Settlements of the Upper Reese River Valley, Central Nevada. Anthropological Papers of the American Museum of Natural History 53. New York.Google Scholar
Tobler, W. R. 1970 A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography 46 : 234240.Google Scholar
Upton, D. 1981 Introductory Spatial Analysis. Methuen, London.Google Scholar
Upton, G. J. G., and Fingleton, B. 1989 Spatial Data Analysis by Example : Categorical and Directional Data, vol. 2. John Wiley, New York.Google Scholar
Wansleeben, M. 1988 Applications of Geographical Information Systems in Archaeological Research. In Computer and Quantitative Methods in Archaeology 1988, edited by Q, S. P.. Rahtz, pp. 435451. BAR International Series 446, vol. 2. British Archaeological Reports, Oxford.Google Scholar
Whitley, D. S., and Clark, W. A. V. 1985 Spatial Autocorrelation Tests and the Classic Maya Collapse : Methods and Inferences. Journal of Archaeological Science 12 : 377395.Google Scholar
Zarky, A. 1976 Statistical Analysis of Site Catchments at Ocos, Guatemala. In The Early Mesoamerican Village, edited by Flannery, K. V., pp. 117130. Academic Press, New York.Google Scholar