Hostname: page-component-7dd5485656-2pp2p Total loading time: 0 Render date: 2025-10-28T08:56:30.685Z Has data issue: false hasContentIssue false

A New Method for Classifying Dart and Arrow Projectile Points

Published online by Cambridge University Press:  27 October 2025

Briggs Buchanan*
Affiliation:
Deparment of Anthropology and Sociology, University of Tulsa, Tulsa, OK, USA
Marcus J. Hamilton
Affiliation:
Department of Anthropology and School of Data Science, University of Texas, San Antonio, TX, USA
Robert S. Walker
Affiliation:
Department of Anthropology, University of Missouri, Columbia, MO, USA
*
Corresponding author: Briggs Buchanan; Email: briggs-buchanan@utulsa.edu

Abstract

A long-standing classification problem in archaeology is determining the type of weapon delivery system used by people in the past. This is usually done by comparing archaeological points to known dart and arrow points from the ethnographic and archaeological record. There are no simple criteria to discriminate between these two states and the challenge is to identify a subset of traits and their interactions to solve this problem. Here we introduce a Bayesian technique of classifying dart and arrow. Using machine-learning feature selection, we first find the optimal set of variables for classification. We then use a Generalized Additive Model to model the interaction of these variables in a Bayesian logistic framework to capture the nonlinear decision boundary between darts and arrows and assign probabilities of a point belonging to either state. To counteract the imbalance of having more arrows than darts, we adjust the typical decision cutoff using an iterative approach that balances sensitivity and specificity. We increase the sample of known arrow and dart points with 102 previously published specimens from the West. The code for our model is available and easily accessible through an online application. We apply our model to published dart-versus-arrow classifications to demonstrate its utility.

Resumen

Resumen

Un problema de clasificación de larga data en arqueología es determinar el tipo de sistema de lanzamiento de armas utilizado por las personas en el pasado. Esto generalmente se hace comparando puntas arqueológicas con puntas de dardos y flechas conocidas del registro etnográfico y arqueológico. No existen criterios simples para discriminar entre estos dos tipos, y el desafío consiste en identificar un subconjunto de rasgos y sus interacciones para resolver este problema. Aquí presentamos una técnica bayesiana para clasificar entre dardos y flechas. Utilizando una selección de características basada en aprendizaje automático, primero identificamos el conjunto óptimo de variables para la clasificación. Luego usamos un Modelo Aditivo Generalizado para modelar la interacción de estas variables en un marco logístico bayesiano, con el fin de capturar el límite de decisión no lineal entre dardos y flechas y asignar probabilidades a que una punta pertenezca a uno u otro tipo. Para contrarrestar el desequilibrio de tener más flechas que dardos, ajustamos el punto de corte típico de decisión utilizando un enfoque iterativo que equilibra la sensibilidad y la especificidad. Ampliamos la muestra de puntas de flechas y dardos conocidas con 102 especímenes previamente publicados del Oeste. El código de nuestro modelo está disponible y es fácilmente accesible a través de una aplicación en línea. Aplicamos nuestro modelo a clasificaciones publicadas de dardos versus flechas para demostrar su utilidad.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Society for American Archaeology.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

References Cited

Ames, Kenneth M., Fuld, Kristen A., and Davis, Sara. 2010. Dart and Arrow Points on the Columbia Plateau of Western North America. American Antiquity 75(2):287325.10.7183/0002-7316.75.2.287CrossRefGoogle Scholar
Amick, Daniel S. 2024. Chipped-Stone Crescents from the Terminal Pleistocene–Early Holocene of Far Western North America and the Transverse Projectile Point Hypothesis. Journal of Archaeological Method and Theory 31(4):20822163.Google Scholar
Bement, Leland. 2002. Pickin’ Up the Pieces: Folsom Projectile Point Re‐Sharpening Technology. In Folsom Technology and Lifeways, edited by John, E. Clark and Michael, B. Collins, pp. 135140. Special Publication No. 4. Department of Anthropology, University of Tulsa, Tulsa, Oklahoma.Google Scholar
Bergman, C. A., McEwen, E., and Miller, R.. 1988. Experimental Archery: Projectile Velocities and Comparison of Bow Performances. Antiquity 62(237):658670.10.1017/S0003598X00075050CrossRefGoogle Scholar
Bettinger, Robert L. 2013. Effects of the Bow on Social Organization in Western North America. Evolutionary Anthropology 22(3):118123.10.1002/evan.21348CrossRefGoogle ScholarPubMed
Bettinger, Robert L., and Eerkens, Jelmer. 1999. Point Typologies, Cultural Transmission, and the Spread of Bow-and-Arrow Technology in the Prehistoric Great Basin. American Antiquity 64(2):231242.Google Scholar
Blitz, John H. 1988. Adoption of the Bow in Prehistoric North America. North American Archaeologist 9(2):123145.10.2190/HN64-P1UD-NM0A-J0LRCrossRefGoogle Scholar
Blitz, John H., and Porth, Erik S.. 2013. Social Complexity and the Bow in the Eastern Woodlands. Evolutionary Anthropology 22(3):8995.Google ScholarPubMed
Bradbury, Andrew P. 1998. The Bow and Arrow in the Eastern Woodlands: Evidence for an Archaic Origin. North American Archaeologist 18(3):207233.10.2190/F5CX-0PBD-EUPJ-D7NTCrossRefGoogle Scholar
Breslawski, Ryan P., Etter, Bonnie L., Jorgeson, Ian, and Boulanger, Matthew T.. 2018. The Atlatl to Bow Transition: What Can We Learn from Modern Recreational Competitions? Lithic Technology 43(1):2637.10.1080/01977261.2017.1416918CrossRefGoogle Scholar
Browne, Jim. 1938. Antiquity of the Bow. American Antiquity 3(4):358359.Google Scholar
Browne, Jim. 1940. Projectile Points. American Antiquity 5(3):209213.Google Scholar
Buchanan, Briggs, Eren, Metin I., Boulanger, Matthew T., and O’Brien, Michael J.. 2015. Size, Shape, Scars, and Spatial Patterning: A Quantitative Assessment of Late Pleistocene (Clovis) Point Resharpening. Journal of Archaeological Science: Reports 3:1121.Google Scholar
Buchanan, Briggs, and Hamilton, Marcus J.. 2021. Scaling Laws of Paleoindian Projectile Point Design. Journal of Archaeological Method and Theory 28(2):580602.Google Scholar
Buchanan, Briggs, Walker, Robert S., Hamilton, Marcus J., Story, Brett, Bebber, Michelle, Wilcox, Dan, and Eren, Metin I.. 2022. Experimental Assessment of Lanceolate Projectile Point and Haft Robustness. Journal of Archaeological Science: Reports 42:103399. https://doi.org/10.1016/j.jasrep.2022.103399.Google Scholar
Bürkner, Paul-Christian. 2017. brms: An R Package for Bayesian Multilevel Models Using Stan. Journal of Statistical Software 80(1):128.10.18637/jss.v080.i01CrossRefGoogle Scholar
Bürkner, Paul-Christian. 2018. Advanced Bayesian Multilevel Modeling with the R Package brms. R Journal 10(1):395411.Google Scholar
Butler, William B. 1975. The Atlatl: The Physics of Function and Performance. Plains Anthropologist 20(68):105110.10.1080/2052546.1975.11908735CrossRefGoogle Scholar
Christenson, Andrew L. 1986. Projectile Point Size and Projectile Aerodynamics: An Exploratory Study. Plains Anthropologist 31(112):109128.Google Scholar
Corliss, David W. 1972. Neck Width of Projectile Points: An Index of Culture Continuity and Change. Occasional Papers No. 29. Idaho State University Museum, Pocatello.Google Scholar
Cotterell, Brian, and Kamminga, Johan. 1990. Mechanics of Pre-Industrial Technology: An Introduction to the Mechanics of Ancient and Traditional Material Culture. Cambridge University Press, Cambridge.Google Scholar
Eren, Metin I., Story, Brett, Perrone, Alyssa, Bebber, Michelle, Hamilton, Marcus, Walker, Robert S., and Buchanan, Briggs. 2020. North American Clovis Point Form and Performance: An Experimental Assessment of Penetration Depth. Lithic Technology 45(4):263282.10.1080/01977261.2020.1794358CrossRefGoogle Scholar
Erlandson, Jon M., Watts, Jack L., and Jew, Nicholas P.. 2014. Darts, Arrows, and Archaeologists: Distinguishing Dart and Arrow Points in the Archaeological Record. American Antiquity 79(1):162169.10.7183/0002-7316.79.1.162CrossRefGoogle Scholar
Erwin, John C., Holly, Donald H., Hull, Stephen H., and Rast, Timothy L.. 2005. Form and Function of Projectile Points and the Trajectory of Newfoundland Prehistory. Canadian Journal of Archaeology 29(1):4667.Google Scholar
Fenenga, Franklin. 1953. The Weights of Chipped Stone Points: A Clue to Their Functions. Southwestern Journal of Anthropology 9(3):309323.10.1086/soutjanth.9.3.3628702CrossRefGoogle Scholar
Flenniken, J. Jeffrey, and Anan, W. Raymond. 1986. Morphological Projectile Point Typology: Replication Experimentation and Technological Analysis. American Antiquity 51(3):603614.10.2307/281755CrossRefGoogle Scholar
Fowler, Don D., and Matley, John F.. 1979. Material Culture of the Numa: The John Wesley Powell Collection, 1867–1880. Contributions to Anthropology No. 26. Smithsonian Institution, Washington, DC.Google Scholar
Grund, Brigid S. 2017. Behavioral Ecology, Technology, and the Organization of Labor: How a Shift from Spear Thrower to Self Bow Exacerbates Social Disparities. American Anthropologist 119(1):104119.10.1111/aman.12820CrossRefGoogle Scholar
Grund, Brigid S., and Huzurbazar, Snehalata V.. 2018. Radiocarbon Dating of Technological Transitions: The Late Holocene Shift from Atlatl to Bow in Northwestern Subarctic Canada. American Antiquity 83(1): 148162.10.1017/aaq.2017.53CrossRefGoogle Scholar
Helwig, Kate, Monahan, Valery, Poulin, Jennifer, and Andrews, Thomas D.. 2014. Ancient Projectile Weapons from Ice Patches in Northwestern Canada: Identification of Resin and Compound Resin-Ochre Hafting Adhesives. Journal of Archaeological Science 41:655665.10.1016/j.jas.2013.09.010CrossRefGoogle Scholar
Hildebrandt, William R., and King, Jerome H.. 2012. Distinguishing between Darts and Arrows in the Archaeological Record: Implications for Technological Change in the American West. American Antiquity 77(4):789799.10.7183/0002-7316.77.4.789CrossRefGoogle Scholar
Hockett, Bryan, Hildebrandt, William R., and King, Jerome H.. 2014. Identifying Dart and Arrow Points in the Great Basin: Comment on Smith et al.’s “Points in Time: Direct Radiocarbon Dates on Great Basin Projectile Points.” American Antiquity 79(3):561565.10.7183/0002-7316.79.3.561CrossRefGoogle Scholar
Hoerl, Arthur, and Kennard, Robert. 1988. Ridge Regression. In Encyclopedia of Statistical Sciences, edited by Johnson, Norman Lloyd and Kotz, Samuel, pp. 129136. Wiley, New York.Google Scholar
Hoffman, Matthew D., and Gelman, Andrew. 2014. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15(1):15931623.Google Scholar
Hornbaker, Christina, and Jones, Terry L.. 2024. Cleaning Up California Culture History: The Malaga Cove Leaf Projectile Point Type. California Archaeology 16(1):127.10.1080/1947461X.2024.2308958CrossRefGoogle Scholar
Howard, Calvin D. 1974. The Atlatl: Function and Performance. American Antiquity 39(1):102104.10.2307/279223CrossRefGoogle Scholar
Hughes, Susan S. 1998. Getting to the Point: Evolutionary Change in Prehistoric Weaponry. Journal of Archaeological Method and Theory 5(4):345408.10.1007/BF02428421CrossRefGoogle Scholar
Hutchings, W. Karl, and Lorenz, W. Brüchert. 1997. Spearthrower Performance: Ethnographic and Experimental Research. Antiquity 71(274):890897.10.1017/S0003598X0008580XCrossRefGoogle Scholar
Justice, Noel D. 1987. Stone Age Spear and Arrow Points of the Midcontinental and Eastern United States. Indiana University Press, Bloomington.Google Scholar
Justice, Noel D. 2002a. Stone Age Spear and Arrow Points of the Southwestern United States. Indiana University Press, Bloomington.Google Scholar
Justice, Noel D. 2002b. Stone Age Spear and Arrow Points of California and the Great Basin. Indiana University Press, Bloomington.Google Scholar
Justice, Noel D., and Kudlaty, Suzanne K.. 1999. Field Guide to Projectile Points of the Midwest. Indiana University Press, Bloomington.Google Scholar
Keddie, Grant, and Nelson, Erle. 2005. An Arrow from the Tsitsutl Glacier, British Columbia. Canadian Journal of Archaeology 29 (1):113123.Google Scholar
Kidder, A.V. 1938. Arrow-Heads or Dart Points. American Antiquity 4(2):156157.10.2307/275990CrossRefGoogle Scholar
Knight, George C., and Keyser, James D.. 1983. A Mathematical Technique for Dating Projectile Points Common to the Northwestern Plains. Plains Anthropologist 28(101):199207.10.1080/2052546.1983.11909130CrossRefGoogle Scholar
Kovarovic, Kris, Aiello, Leslie C., Cardini, Andrea, and Lockwood, Charles A.. 2011. Discriminant Function Analyses in Archaeology: Are Classification Rates Too Good to Be True? Journal of Archaeological Science 38(11):30063018.10.1016/j.jas.2011.06.028CrossRefGoogle Scholar
Lambert, Patricia M. 2002. The Archaeology of War: A North American Perspective. Journal of Archaeological Research 10(3):207241.10.1023/A:1016063710831CrossRefGoogle Scholar
Landis, J. Richard, and Gary, G. Koch. 1977. The Measurement of Observer Agreement for Categorical Data. Biometrics 33(1):159174.10.2307/2529310CrossRefGoogle ScholarPubMed
Lepers, Christian, and Rots, Veerle. 2020. The Important Role of Bow Choice and Arrow Fletching in Projectile Experimentation: A Ballistic Approach. Journal of Archaeological Science: Reports 34(A):102613. https://doi.org/10.1016/j.jasrep.2020.102613.Google Scholar
Lombard, Marlize, Lotter, Matt G., and Caruana, Matthew V.. 2024. The Tip Cross-Sectional Area (TCSA) Method Strengthened and Constrained with Ethno-Historical Material from Sub-Saharan Africa. Journal of Archaeological Method and Theory 31(1):2650.10.1007/s10816-022-09595-1CrossRefGoogle Scholar
Losey, Robert J., and Hull, Emily. 2019. Learning to Use Atlatls: Equipment Scaling and Enskilment on the Oregon Coast. Antiquity 93(372):15691585.10.15184/aqy.2019.172CrossRefGoogle Scholar
Lyman, R. Lee, VanPool, Todd L., and Michael, J. O’Brien. 2008. Variation in North American Dart Points and Arrow Points When One or Both Are Present. Journal of Archaeological Science 35(10):28052812.10.1016/j.jas.2008.05.008CrossRefGoogle Scholar
Maguire, Leanna, Buchanan, Briggs, Wilson, Michael, and Eren, Metin I.. 2021. The Effect of Isometric Scaling on Flaked Stone Projectile Point Impact Durability: An Experimental Assessment. Lithic Technology 46(4):260269.10.1080/01977261.2021.1874705CrossRefGoogle Scholar
Marsh, Erik J., Yebra, Lucía, Castro, Silvina Celeste, and Cortegoso, Valeria. 2024. Spearthrower or Bow? Hafted Projectile Points from the Americas Refine Comparative Baselines for Tracking Projectile Technologies. Quaternary International 704:516.10.1016/j.quaint.2023.10.004CrossRefGoogle Scholar
Maschner, Herbert, and Mason, Owen K.. 2013. The Bow and Arrow in Northern North America. Evolutionary Anthropology 22(3):133138.10.1002/evan.21357CrossRefGoogle ScholarPubMed
Mika, Anna, Flood, Kat, Norris, James D., Wilson, Michael, Key, Alastair, Buchanan, Briggs, Redmond, Brian, Pargeter, Justin, Bebber, Michelle R., and Eren, Metin I.. 2020. Miniaturization Optimized Weapon Killing Power during the Social Stress of Late Pre-Contact North America (AD 600–1600). PLoS ONE 15(3):e0230348. https://doi.org/10.1371/journal.pone.0230348.CrossRefGoogle ScholarPubMed
Milner, George R., Chaplin, George, and Zavodny, Emily. 2013. Conflict and Societal Change in Late Prehistoric Eastern North America. Evolutionary Anthropology 22(3):96102.10.1002/evan.21351CrossRefGoogle ScholarPubMed
Mukusha, Lawrence, Miller, G. Logan, Smith, Andrew, Bebber, Michelle R., Spurlock, Linda, Gerrath, John A., Ortiz, Joseph D., et al. 2024. Hit or Miss: Do Microscopic Linear Impact Traces (MLITs) Form on Clovis Stone Tips Launched via Atlatl into Foliage and Sediment? Journal of Archaeological Science: Reports 55:104517. https://doi.org/10.1016/j.jasrep.2024.104517.Google Scholar
Nassaney, Michael S., and Pyle, Kendra. 1999. The Adoption of the Bow and Arrow in Eastern North America: A View from Central Arkansas. American Antiquity 64(2):243263.10.2307/2694277CrossRefGoogle Scholar
Odell, George H. 1988. Addressing Prehistoric Hunting Practices through Stone Tool Analysis. American Anthropologist 90(2):335356.10.1525/aa.1988.90.2.02a00060CrossRefGoogle Scholar
Patterson, Leland W. 1985. Distinguishing between Arrow and Spear Points on the Upper Texas Coast. Lithic Technology 14(2):8189.10.1080/01977261.1985.11754507CrossRefGoogle Scholar
Rafferty, Janet. 2018. Reverse Engineering Stone Atlatl Dart Points. Lithic Technology 43(3):151165.10.1080/01977261.2018.1462977CrossRefGoogle Scholar
Raymond, Anan. 1986. Experiments in the Function and Performance of the Weighted Atlatl. World Archaeology 18(2):153177.10.1080/00438243.1986.9979996CrossRefGoogle Scholar
Reed, Paul F., and Geib, Phil R.. 2013. Sedentism, Social Change, Warfare, and the Bow in the Ancient Pueblo Southwest. Evolutionary Anthropology 22(3):103110.10.1002/evan.21356CrossRefGoogle ScholarPubMed
Rorabaugh, Adam N., and Fulkerson, Tiffany J.. 2015. Timing of the Introduction of Arrow Technologies in the Salish Sea, Northwest North America. Lithic Technology 40(1):2139.10.1179/2051618514Y.0000000009CrossRefGoogle Scholar
Roth, Barbara J., Toney, Elizabeth, and Lorentzen, Leon. 2011. The Advent of Bow and Arrow Technology in the Mimbres Mogollon Region. Kiva 77(1):87109.10.1179/kiv.2011.77.1.005CrossRefGoogle Scholar
Schroedl, Alan R. 2024. Distinguishing Prehistoric Arrow Points from Dart Points in the Basin-Plateau Region. Kiva 90(4):480492.10.1080/00231940.2024.2377824CrossRefGoogle Scholar
Shea, John J. 2006. The Origins of Lithic Projectile Point Technology: Evidence from Africa, the Levant, and Europe. Journal of Archaeological Science 33(6):823846.10.1016/j.jas.2005.10.015CrossRefGoogle Scholar
Shott, Michael J. 1993. Spears, Darts, and Arrows: Late Woodland Hunting Techniques in the Upper Ohio Valley. American Antiquity 58(3):425443.10.2307/282105CrossRefGoogle Scholar
Shott, Michael J. 1997. Stones and Shafts Redux: The Metric Discrimination of Chipped-Stone Dart and Arrow Points. American Antiquity 62(1):86101.10.2307/282380CrossRefGoogle Scholar
Sitton, Jase, Story, Brett, Buchanan, Briggs, and Eren, Metin I.. 2020. Tip Cross-Sectional Geometry Predicts the Penetration Depth of Stone-Tipped Projectiles. Scientific Reports 10:13289. https://doi.org/10.1038/s41598-020-70264-y.CrossRefGoogle ScholarPubMed
Smith, Geoffrey M. 2015. Modeling the Influences of Raw Material Availability and Functional Efficiency on Obsidian Projectile Point Curation: A Great Basin Example. Journal of Archaeological Science: Reports 3:112121.Google Scholar
Smith, Geoffrey M., Barker, Pat, Hattori, Eugene M., Raymond, Anan, and Goebel, Ted. 2013. Points in Time: Direct Radiocarbon Dates on Great Basin Projectile Points. American Antiquity 78(3):580594.10.7183/0002-7316.78.3.580CrossRefGoogle Scholar
Smith, Heather L., Jennings, Thomas A., and Smallwood, Ashley M.. 2021. Do Early Paleoindian Point Blades Carry Culturally Significant Shape Information? Modules versus Complete Points Using Geometric Morphometrics. Journal of Archaeological Science: Reports 40(B):103245. https://doi.org/10.1016/j.jasrep.2021.103245.Google Scholar
Stevens, Nathan, and Codding, Brian. 2009. Inferring the Function of Projectile Points from the Central Coast of Alta California. California Archaeology 1(1):727.10.1179/cal.2009.1.1.7CrossRefGoogle Scholar
Thomas, Christian D., Monahan, Valery, Claire Alix, P. Gregory Hare, Herkes, Jennifer, Smith, Holly, Helwig, Kate, Poulin, Jennifer, and Donohoe, Misha. 2023. The Alligator Lake Throwing Dart, Yukon, Canada. Journal of Glacial Archaeology 7:2545.10.1558/jga.27327CrossRefGoogle Scholar
Thomas, David Hurst. 1978. Arrowheads and Atlatl Darts: How the Stones Got the Shaft. American Antiquity 43(3):461472.10.2307/279405CrossRefGoogle Scholar
Thomas, David Hurst. 1981. How to Classify the Projectile Points from Monitor Valley, Nevada. Journal of California and Great Basin Anthropology 3(1):743.Google Scholar
Tibshirani, Robert. 1996. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B 58(1):267288.10.1111/j.2517-6161.1996.tb02080.xCrossRefGoogle Scholar
Tomka, Steve A. 2013. The Adoption of the Bow and Arrow: A Model Based on Experimental Performance Characteristics. American Antiquity 78(3):553569.10.7183/0002-7316.78.3.553CrossRefGoogle Scholar
Tuohy, Donald R. 1982. Another Great Basin Atlatl with Dart Foreshafts and Other Artifacts: Implications and Ramifications. Journal of California and Great Basin Anthropology 4(1):80106.Google Scholar
Turner, Ellen Sue, and Hester, Thomas R.. 1999. A Field Guide to Stone Artifacts of Texas Indians. Gulf Publishing, Lanham, Maryland.Google Scholar
VanPool, Todd L. 2006. The Survival of Archaic Technology in an Agricultural World: How the Atlatl and Dart Endured in the North American Southwest. Kiva 71(4):429452.10.1179/kiv.2006.71.4.004CrossRefGoogle Scholar
VanPool, Todd L., and O’Brien, Michael J.. 2013. Sociopolitical Complexity and the Bow and Arrow in the American Southwest. Evolutionary Anthropology 22(3):111117.10.1002/evan.21355CrossRefGoogle ScholarPubMed
Walde, Dale. 2013. The Bow and Cultural Complexity of the Canadian Plains. Evolutionary Anthropology 22(3):139144.10.1002/evan.21354CrossRefGoogle ScholarPubMed
Walde, Dale. 2014. Concerning the Atlatl and the Bow: Further Observations Regarding Arrow and Dart Points in the Archaeological Record. American Antiquity 79(1):156161.10.7183/0002-7316.79.1.156CrossRefGoogle Scholar
Whittaker, John C. 2013. Comparing Atlatls and Bows: Accuracy and Learning Curve. Ethnoarchaeology 5(2):100111.10.1179/1944289013Z.0000000009CrossRefGoogle Scholar
Whittaker, John C., and Kamp, Kathryn A.. 2006. Primitive Weapons and Modern Sport: Atlatl Capabilities, Learning, Gender, and Age. Plains Anthropologist 51(198):213221.10.1179/pan.2006.016CrossRefGoogle Scholar
Yohe, Robert M. 1998. The Introduction of the Bow and Arrow and Lithic Resource Use at Rose Spring (CA-INY-372). Journal of California and Great Basin Anthropology 20(1):2652.Google Scholar
Zeanah, David W., and Elston, Robert G.. 2001. Testing a Simple Hypothesis Concerning the Resilience of Dart Point Styles to Hafting Element Repair. Journal of California and Great Basin Anthropology 23 (1):93124.Google Scholar
Zou, Hui, and Hastie, Trevor. 2005. Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society Series B: Statistical Methodology 67(2):301320.10.1111/j.1467-9868.2005.00503.xCrossRefGoogle Scholar
Supplementary material: File

Buchanan et al. supplementary material 1

Buchanan et al. supplementary material
Download Buchanan et al. supplementary material 1(File)
File 28.4 KB
Supplementary material: File

Buchanan et al. supplementary material 2

Buchanan et al. supplementary material
Download Buchanan et al. supplementary material 2(File)
File 54.8 KB
Supplementary material: File

Buchanan et al. supplementary material 3

Buchanan et al. supplementary material
Download Buchanan et al. supplementary material 3(File)
File 124.7 KB