Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T22:49:53.404Z Has data issue: false hasContentIssue false

Bayesian Modeling of the Clovis and Folsom Radiocarbon Records Indicates a 200-Year Multigenerational Transition

Published online by Cambridge University Press:  28 February 2022

Briggs Buchanan*
Affiliation:
Department of Anthropology, University of Tulsa, OK, USA
J. David Kilby
Affiliation:
Department of Anthropology, Texas State University, San Marcos, TX, USA
Jason M. LaBelle
Affiliation:
Department of Anthropology and Geography, Colorado State University, Fort Collins, CO, USA
Todd A. Surovell
Affiliation:
Department of Anthropology, University of Wyoming, Laramie, WY, USA
Jacob Holland-Lulewicz
Affiliation:
Department of Anthropology, Washington University, St. Louis, MO, USA
Marcus J. Hamilton
Affiliation:
Department of Anthropology, University of Texas at San Antonio, TX, USA (marcus.hamilton@utsa.edu).
*
(briggs-buchanan@utulsa.edu, corresponding author)

Abstract

An enduring problem in North American archaeology concerns the nature of the transition between the Clovis and Folsom Paleoindian complexes in the West. Traditional models indicate a temporal hiatus between the two complexes implying that Folsom was a population replacement for Clovis. Alternatively, if Folsom was an innovation that occurred within Clovis populations and subsequently spread, we would expect to see a temporal overlap. Here, we test these hypotheses using high-quality radiocarbon dates and Bayesian statistics to infer the temporal boundaries of the complexes. We show that the Folsom complex initially appears between 12,900 and 12,740 cal BP, whereas Clovis disappears between 12,720 and12,490 cal BP. Therefore, Folsom may have appeared about 200 years before Clovis disappeared, and so the two complexes likely co-occurred in the West for nearly eight generations. This finding suggests that Folsom was a successful adaptive innovation that diffused through the western Clovis population, eventually going to fixation over multiple generations.

Un problema persistente en la arqueología norteamericana se refiere a la naturaleza de la transición entre los complejos paleoindios Clovis y Folsom en el oeste. Los modelos tradicionales indican una pausa temporal entre los dos complejos, lo que implica que Folsom fue un reemplazo de población de Clovis. Alternativamente, si Folsom fue una innovación que ocurrió dentro de las poblaciones de Clovis y posteriormente se extendió, esperaríamos ver una superposición temporal. Aquí, probamos estas hipótesis utilizando fechas de radiocarbono de alta calidad y estadísticas bayesianas para inferir los límites temporales de los complejos. Mostramos que el complejo de Folsom aparece inicialmente entre 12,900 y12,740 cal AP mientras que Clovis desaparece entre 12,720 y12,490 cal AP. Por lo tanto, Folsom pudo haber aparecido unos 200 años antes de que Clovis desapareciera, por lo que los dos complejos probablemente coexistieron en el oeste durante casi ocho generaciones. Este resultado sugiere que Folsom fue una innovación adaptativa exitosa que se difundió a través de la población occidental de Clovis y finalmente se fijó en varias generaciones.

Type
Report
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Society for American Archaeology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Amick, Daniel S. 1994 Folsom Diet Breadth and Land Use in the American Southwest. PhD dissertation, Department of Anthropology, University of New Mexico, Albuquerque.Google Scholar
Amick, Daniel S. 1996 Regional Patterns of Folsom Mobility and Land Use in the American Southwest. World Archaeology 27:411426.CrossRefGoogle Scholar
Andrews, Brian N., LaBelle, Jason M., and Seebach, John D. 2008 Spatial Variability in the Folsom Archaeological Record: A Multi-Scalar Approach. American Antiquity 73:464490.CrossRefGoogle Scholar
Barrier, Casey R. 2017 Town Aggregation and Abandonment during the Era of Urban Transformation in the Cahokia Region: Bayesian Modeling of the Washausen Mound-Town. Journal of Archaeological Science: Reports 11:523535.Google Scholar
Bayliss, Alex 2009 Rolling out the Revolution: Using Radiocarbon Dating in Archaeology. Radiocarbon 51:123147.CrossRefGoogle Scholar
Becerra-Valdivia, Lorena, and Higham, Thomas 2020 The Timing and Effect of the Earliest Human Arrivals in North America. Nature 584:9397.CrossRefGoogle ScholarPubMed
Becerra-Valdivia, Lorena, Waters, Michael R., Stafford, Thomas W. Jr., Anzick, Sarah L., Comeskey, Daniel, Devièse, Thibaut, and Higham, Thomas 2018 Reassessing the Chronology of the Archaeological Site of Anzick. PNAS 115:70007003.CrossRefGoogle ScholarPubMed
Bronk Ramsey, Christopher 2009a Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51:337360.Google Scholar
Bronk Ramsey, Christopher 2009b Dealing with Outliers and Offsets in Radiocarbon Dating. Radiocarbon 51:10231045.Google Scholar
Brown, Thomas A., Earle Nelson, D., Vogel, John S., and Southon, John R. 1988 Improved Collagen Extraction by Modified Longin Method. Radiocarbon 30:171177.CrossRefGoogle Scholar
Buchanan, Briggs, Andrews, Brian, David Kilby, J., and Eren, Metin I. 2019 Settling into the Country: Comparison of Clovis and Folsom Lithic Networks in Western North America Shows Increasing Redundancy of Toolstone Use. Journal of Anthropological Archaeology 53:3242.CrossRefGoogle Scholar
Buchanan, Briggs, Andrews, Brian, O'Brien, Michael J., and Eren, Metin I. 2018 An Assessment of Stone Weapon Tip Standardization during the Clovis–Folsom Transition in the Western United States. American Antiquity 83:721734.CrossRefGoogle Scholar
Buchanan, Briggs, David Kilby, J., Hamilton, Marcus J., LaBelle, Jason M., Meyer, Keton A., Holland-Lulewiscz, Jacob, Andrews, Brian, et al. 2021 Bayesian Revision of the Folsom Age Range Using IntCal20. PaleoAmerica 7:133144.CrossRefGoogle Scholar
Buck, Caitlin E., Cavanagh, William G., and Litton, Clifford D. 1996 Bayesian Approach to Interpreting Archaeological Data. Wiley, West Sussex, United Kingdom.Google Scholar
Collard, Mark, Buchanan, Briggs, Hamilton, Marcus J., and O'Brien, Michael J. 2010 Spatiotemporal Dynamics of the Clovis–Folsom Transition. Journal of Archaeological Science 37:25132519.CrossRefGoogle Scholar
Devièse, Thibaut, Stafford, Thomas W. Jr., Waters, Michael R., Wathen, Crista, Comeskey, Daniel, Becerra-Valdivia, Lorena, and Higham, Thomas 2018 Increasing Accuracy for the Radiocarbon Dating of Sites Occupied by the First Americans. Quaternary Science Reviews 198:171180.CrossRefGoogle Scholar
Eighmy, Jeffrey, and LaBelle, Jason M. 1996 Radiocarbon Dating of Twenty-Seven Plains Complexes and Phases. Plains Anthropologist 41:5369.Google Scholar
Firestone, R. B., West, A., Kennett, J. P., Becker, L., Bunch, T. E., Revay, Z. S., Schultz, P. H., et al. 2007 Evidence for an Extraterrestrial Impact 12,900 Years Ago that Contributed to the Megafaunal Extinctions and the Younger Dryas Cooling. PNAS 104:1601616021.CrossRefGoogle Scholar
Fitzpatrick, Scott M. 2006 A Critical Approach to 14C Dating in the Caribbean: Using Chronometric Hygiene to Evaluate Chronological Control and Prehistoric Settlement. Latin American Antiquity 17:389418.Google Scholar
Hamilton, Marcus J., Buchanan, Briggs, Huckell, Bruce B., Holliday, Vance T., Steven Shackley, M., and Hill, Matthew E. 2013 Clovis Paleoecology and Lithic Technology in the Central Rio Grande Rift Region, New Mexico. American Antiquity 78:248265.CrossRefGoogle Scholar
Hamilton, W. Derek, and Krus, Anthony M. 2018 The Myths and Realities of Bayesian Chronological Modeling Revealed. American Antiquity 83:187203.CrossRefGoogle Scholar
Haynes, C. Vance Jr. 1964 Fluted Projectile Points: Their Age and Dispersion. Science 145:14081413.CrossRefGoogle ScholarPubMed
Haynes, C. Vance Jr. 1967 Carbon-14 Dates and Early Man in the New World. In Pleistocene Extinctions: The Search for a Cause, edited by Martin, Paul S. and Wright, H. E. Jr., pp. 267286. Yale University Press, New Haven.Google Scholar
Haynes, C. Vance Jr. 1969 The Earliest Americans. Science 166:709715.CrossRefGoogle ScholarPubMed
Haynes, C. Vance Jr. 1971 Time, Environment, and Early Man. Arctic Anthropology 8:314.Google Scholar
Haynes, C. Vance Jr. 1984 Stratigraphy and Late Pleistocene Extinction in the United States. In Quaternary Extinctions: A Prehistoric Revolution, edited by Martin, Paul S. and Klein, Richard G., pp. 345353. University of Arizona Press, Tucson.Google Scholar
Haynes, C. Vance Jr., Beukens, Roelf P., Jull, A. J. T., and Davis, Owen K. 1992 New Radiocarbon Dates for Some old Folsom Sites: Accelerator Technology. In Ice Age Hunters of the Rockies, edited by Stanford, Dennis J. and Day, Jane S., pp. 83100. University Press of Colorado, Niwot.Google Scholar
Henrich, Joseph 2001 Cultural Transmission and the Diffusion of Innovations: Adoption Dynamics Indicate that Biased Cultural Transmission Is the Predominate Force in Behavioral Change. American Anthropologist 103:9921013.Google Scholar
Higham, Tom, Douka, Katerina, Wood, Rachel, Ramsey, Christopher Bronk, Brock, Fiona, Basell, Laura, Camps, Marta, et al. 2014 The Timing and Spatiotemporal Patterning of Neanderthal Disappearance. Nature 512:306309.CrossRefGoogle ScholarPubMed
Hofman, Jack L. 1992 Recognition and Interpretation of Folsom Technological Variability on the Southern Plains. In Ice Age Hunters of the Rockies, edited by Stanford, Dennis J. and Day, Jane S., pp. 193224. University Press of Colorado, Niwot.Google Scholar
Hofman, Jack L. 2002 High Points in Folsom Archaeology. In Folsom Technology and Lifeways, edited by Clark, John E. and Collins, Michael B., pp. 399412. Special Publication No. 4, Lithic Technology. Department of Anthropology, University of Tulsa, Tulsa, Oklahoma.Google Scholar
Holliday, Vance T. 2000 The Evolution of Paleoindian Geochronology and Typology on the Great Plains. Geoarchaeology 15:227290.3.0.CO;2-A>CrossRefGoogle Scholar
Irwin, Henry T., and Wormington, H. Marie 1970 Paleo-Indian Tool Types in the Great Plains. American Antiquity 35:2434.CrossRefGoogle Scholar
Jennings, Thomas A. 2012 Clovis, Folsom, and Midland Components at the Debra L. Friedkin Site, Texas: Context, Chronology, and Assemblages. Journal of Archaeological Science 39:32393247.CrossRefGoogle Scholar
Jennings, Thomas A. 2016 The Impact of Stone Supply Stress on the Innovation of a Cultural Variant: The Relationship of Folsom and Midland. PaleoAmerica 2:116123.CrossRefGoogle Scholar
Jennings, Thomas A., Pevny, Charlotte D., and Dickens, William A. 2010 A Biface and Blade Core Efficiency Experiment: Implications for Early Paleoindian Technological Organization. Journal of Archaeological Science 37:21552164.Google Scholar
Kelly, Robert L., and Todd, Lawrence C. 1988 Coming into the Country: Early Paleoindian Hunting and Mobility. American Antiquity 53:231244.CrossRefGoogle Scholar
Kilby, J. David 2008 An Investigation of Clovis Caches: Content, Function, and Technological Organization. PhD dissertation, Department of Anthropology, University of New Mexico, Albuquerque.Google Scholar
Kilby, J. David 2015 A Regional Perspective on Clovis Blades and Blade Caching. In Clovis: On the Edge of a New Understanding, edited by Smallwood, Ashley M. and Jennings, Thomas A., pp. 145159. Texas A&M University Press, College Station.Google Scholar
Kilby, J. David, and Huckell, Bruce B. 2013 Clovis Caches: Current Perspectives and Future Directions. In Paleoamerican Odyssey, edited by Graf, Kelly, Ketron, Caroline V., and Waters, Michael R., pp. 257272. Center for the Study of the First Americans,Texas A&M University, College Station.Google Scholar
Kolodny, Oren, Creanza, Nicole, and Feldman, Marcus W. 2015 Evolution in Leaps: The Punctuated Accumulation and Loss of Cultural Innovations. PNAS 112:E6762E6769.CrossRefGoogle ScholarPubMed
Kutschera, W., Steier, P., Weninger, F., and Wild, W. M. 2007 The Principle of the Bayesian Method. International Journal for Egyptian Archeology and Related Disciplines 16:317324.Google Scholar
Lee, Sharen, and Ramsey, Christopher Bronk 2012 Development and Application of the Trapezoidal Model for Archaeological Chronologies. Radiocarbon 54:107122.Google Scholar
Lulewicz, Jacob 2018 Radiocarbon Data, Bayesian Modeling, and Alternative Historical Frameworks: A Case Study from the US Southeast. Advances in Archaeological Practice 6:5871.Google Scholar
Mackie, Madeline E., Surovell, Todd A., O'Brien, Matthew, Kelly, Robert L., Pelton, Spencer, Vance Haynes, C., Frison, George C., et al. 2020 Confirming a Cultural Association at the La Prele Mammoth Site (48CO1401), Converse County, Wyoming. American Antiquity 85:554572.Google Scholar
Manning, Sturt W., Birch, Jennifer, Conger, Megan Anne, Dee, Michael W., Griggs, Carol, and Hadden, Carla S. 2019 Contact-Era Chronology Building in Iroquoia: Age Estimates for Arendarhonon Sites and Implications for Identifying Champlain's Cahiagué. American Antiquity 84:684707.CrossRefGoogle Scholar
Nolan, Kevin C. 2012 Temporal Hygiene: Problems in Cultural Chronology of the Late Prehistoric Period of the Middle Ohio River Valley. Southeastern Archaeology 31:185206.Google Scholar
Pelton, Spencer R., Kornfeld, Marcel, Larson, Mary Lou, and Minckley, Thomas 2017 Component Age Estimates for the Hell Gap Paleoindian Site and Methods for Chronological Modeling of Stratified Open Sites. Quaternary Research 88:234247.CrossRefGoogle Scholar
Pelton, Spencer R., Kornfeld, Marcel, Minckley, Thomas, and Larson, Mary Lou 2018 Component Age Estimates for the Hell Gap Paleoindian Site and Methods for Chronological Modeling of Stratified Open Sites—Response to Commentary by C. Vance Haynes. Quaternary Research 90:248250.CrossRefGoogle Scholar
Perreault, Charles 2019 The Quality of the Archaeological Record. University of Chicago Press, Chicago.Google Scholar
Pettitt, P. B., Davies, W., Gamble, C. S., and Richards, M. B. 2003 Palaeolithic Radiocarbon Chronology: Quantifying Our Confidence beyond Two Half-Lives. Journal of Archaeological Science 30:16851693.CrossRefGoogle Scholar
Quinn, Colin P., Ciugudean, Horia, Bălan, Gabriel, and Hodgins, Gregory 2020 Rethinking Time, Culture and Socioeconomic Organisation in Bronze Age Transylvania. Antiquity 94:4461.CrossRefGoogle Scholar
Reimer, Paula J., Austin, William E. N., Bard, Edouard, Bayliss, Alex, Blackwell, Paul G., Ramsey, Christopher Bronk, Butzin, Martin, et al. 2020 The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 62:725757.Google Scholar
Renn, Jurgen 2020 The Evolution of Knowledge: Rethinking Science for the Anthropocene. Princeton University Press, Princeton, New Jersey.Google Scholar
Rogers, Everett M. 2010 Diffusion of Innovations. 4th ed. Simon and Schuster, New York.Google Scholar
Sanchez, Guadalupe, Holliday, Vance T., Gaines, Edmund P., Arroyo-Cabrales, Joaquín, Martínez-Tagüeña, Natalia, Kowler, Andrew, Lange, Todd, Hodgins, Gregory W. L., Mentzer, Susan M., and Sanchez-Morales, Ismael 2014 Human (Clovis)–Gomphothere (Cuvieronius sp.) Association~ 13,390 Calibrated yBP in Sonora, Mexico. PNAS 111:1097210977.Google ScholarPubMed
Smallwood, Ashley M., Jennings, Thomas A., Pevny, Charlotte D., and Anderson, David G. 2019 Paleoindian Projectile-Point Diversity in the American Southeast: Evidence from the Mosaic Evolution of Point Design. PaleoAmerica 5:218230.CrossRefGoogle Scholar
Stafford, Thomas W. Jr., Brendel, Klaus, and Duhamel, Raymond C. 1988 Radiocarbon, 13C and 15N Analysis of Fossil Bone: Removal of Humates with XAD-2 Resin. Geochimica et Cosmochimica Acta 52:22572267.CrossRefGoogle Scholar
Stafford, Thomas W. Jr., Edgar Hare, P., Currie, Lloyd, Timothy Jull, A. J., and Donahue, Douglas J. 1991 Accelerator Radiocarbon Dating at the Molecular Level. Journal of Archaeological Science 18:3572.CrossRefGoogle Scholar
Steffensen, Jørgen Peder, Andersen, Katrine K., Bigler, Matthias, Clausen, Henrik B., Dahl-Jensen, Dorthe, Fischer, Hubertus, Goto-Azuma, Kumiko, et al. 2008 High-Resolution Greenland Ice Core Data Show Abrupt Climate Change Happens in Few Years. Science 321:680684.CrossRefGoogle ScholarPubMed
Surovell, Todd, Boyd, Joshua R., Vance Haynes, C. Jr., and Hodgins, Gregory W. L. 2016 On the Dating of the Folsom Complex and Its Correlation with the Younger Dryas, the End of Clovis, and Megafaunal Extinction. PaleoAmerica 2:8189.Google Scholar
Taché, Karine, and Hart, John P. 2013 Chronometric Hygiene of Radiocarbon Databases for Early Durable Cooking Vessel Technologies in Northeastern North America. American Antiquity 78:359372.CrossRefGoogle Scholar
Taylor, Richard E., Haynes, C. Vance Jr., and Stuiver, Minze 1996 Clovis and Folsom Age Estimates: Stratigraphic Context and Radiocarbon Calibration. Antiquity 70:515525.CrossRefGoogle Scholar
Taylor, Richard E., Stuiver, Minze, and Haynes, C. Vance Jr. 1996 Development and Extension of the Calibration of the Radiocarbon Time Scale: Archaeological Applications. Quaternary Science Reviews 15:655668.CrossRefGoogle Scholar
Tune, Jesse 2016 The Clovis–Cumberland–Dalton Succession: Settling into the Midsouth United States during the Pleistocene to Holocene Transition. PaleoAmerica 2:261273.CrossRefGoogle Scholar
Waters, Michael R., and Stafford, Thomas W. Jr. 2007 Redefining the Age of Clovis: Implications for the Peopling of the Americas. Science 315:11221126.Google ScholarPubMed
Waters, Michael R., Stafford, Thomas W. Jr., and Carlson, David L. 2020 The Age of Clovis—13,050 to 12,750 cal yr BP. Science Advances 6:eaaz0455.CrossRefGoogle Scholar
Whittle, Alasdair William Richardson, Healy, Frances Margaret Alton, and Bayliss, Alexandra 2011 Gathering Time: Dating the Early Neolithic Enclosures of Southern Britain and Ireland. Oxbow Books, London.Google Scholar
Supplementary material: File

Buchanan et al. supplementary material

Buchanan et al. supplementary material 1

Download Buchanan et al. supplementary material(File)
File 17 KB
Supplementary material: File

Buchanan et al. supplementary material

Buchanan et al. supplementary material 2

Download Buchanan et al. supplementary material(File)
File 10.8 KB
Supplementary material: File

Buchanan et al. supplementary material

Buchanan et al. supplementary material 3

Download Buchanan et al. supplementary material(File)
File 17 KB
Supplementary material: File

Buchanan et al. supplementary material

Buchanan et al. supplementary material 4

Download Buchanan et al. supplementary material(File)
File 9.1 KB
Supplementary material: File

Buchanan et al. supplementary material

Buchanan et al. supplementary material 5

Download Buchanan et al. supplementary material(File)
File 924.4 KB