Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T02:53:50.122Z Has data issue: false hasContentIssue false

Mass Spectrometric Radiocarbon Dates from Three Rock Paintings of Known Age

Published online by Cambridge University Press:  20 January 2017

Ruth A. Armitage
Affiliation:
Department of Chemistry, Texas A&M University, College Station, TX 77843 E-mails: rarmitage@osprey.smcm.edumwrowe@tamu.edu
James E. Brady
Affiliation:
Department of Chemistry, Texas A&M University, College Station, TX 77843 E-mails: rarmitage@osprey.smcm.edumwrowe@tamu.edu
Allan Cobb
Affiliation:
Department of Anthropology, California State University, Los Angeles, CA 90032 E-mails: jbrady@calstatela.edu
John R. Southon
Affiliation:
1116 Hollybluff Street, Austin, TX 78753, USA E-mails: acobb@nasw.org
Marvin W. Rowe
Affiliation:
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94551southonl@llnl.gov

Abstract

Radiocarbon age determinations are presented on three hieroglyphic texts from Naj Tunich cave in Guatemala containing Maya calendar dates. The ages obtained are on average 110–140 years older than the calendar dates. Several possible reasons are discussed for this discrepancy: one that is applicable to all radiocarbon dates on charcoal, one that applies to rock paintings, and one that is specific for the tropics. Possible problems with the ages ascribed to the Maya calendar dates are also discussed. Even with the potential problems that may exist, these dates still fall within 110–140 years of the ascribed calendar dates. Caution is urged in the interpretation of dates on charcoal pigments from rock paintings; consideration of the “old wood” and “old charcoal” factors is important.

Résumé

Résumé

Se presenta los resultados de fechamiento radiocarbonico de tres de los textos jeroglificos de la cueva Naj Tunich en Guatemala que contienen fechas calendarias Mayas. Las fechas obtenidas tienen un promedio entre 110–140 años de más antiguedad que lasfechas calendricas. Hay diverses posibilidades que expliican esta discrepancia, la primera es aplicable a todas lasfechas de radiocarbono en carbon; la segunda, es aplicable apinturas rupestres y la tercera, es especifica para el trópico. También, se argumenta la posibilidad de problemas con las edades asignadas a las fechas calendricas. Aún con la existencia potential de estos problemas, estas fechas recaen dentro de los 110–140 años asignados a lasfechas calendricas. Se recomienda precaución en la interpretación de lasfechas encontradas en la pigmentatión del carbón en las pinturas rupestres; es importante considerar los problemas con la 'madera y carbon antiguos'.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Adams, R. E. W. 1971 The Ceramics of Altar de Sacrificios. Papers of the Peabody Museum of Archaeology and Ethnology, Harvard University, Vol. 63, No. 1. Cambridge.Google Scholar
Armitage, R. A., David, B., Hyman, M., Rowe, M. W., Tuniz, C., Lawson, E., Jacobsen, G., and Hua, Q. 1998 Radiocarbon Determinations on Chillagoe Rock Paintings : Small Sample Accelerator Mass Spectrometry. Records of the Australian Museum 50 : 285292.Google Scholar
Armitage, R. A. A., Hyman, M., Rowe, M. W., Loendorf, L. L., and Southon, J. R. 2000 Dated Rock Painting at Red Cliffs, Arizona. Kiva 65 : 253266.Google Scholar
Armitage, R. A., Hyman, M., Southon, J., Barat, C., and Rowe, M. W. 1997 Rock-Art Image in Fern Cave, Lava Beds National Monument, California : Not the AD 1024 (Crab Nebula) Supernova. Antiquity 71 : 715719.CrossRefGoogle Scholar
Bednarik, R. G. 1994a Conceptual Pitfalls in Dating of Palaeolithic Rock Art. Prehistoire Anthropologic Mediterraneennes 3 : 95102.Google Scholar
Bednarik, R. G. 1994b About Rock Art Dating. International Newsletter on Rock Art 7 : 1618.Google Scholar
Brown, T. A., and Southon, J. R. 1997 Corrections for Contamination Background in AMS C Measurements. Nuclear Instrumentation and Methods B123 : 208213.CrossRefGoogle Scholar
Chaffee, S. D., Hyman, M., and Rowe, M. W. 1993 AMS 14C Dating of Rock Paintings. In Time and Space : Dating and Spatial Considerations in Rock Art Research, edited by Steinbring, J., Watchman, A., Faulstich, P., P. S. C. Tacon, pp. 6773. Australian Rock Art Research Association, Melbourne, Australia.Google Scholar
Chaffee, S. D., Hyman, M., Rowe, M. W., Coulam, N., Schroedl, A., and Hogue, K. 1994 Radiocarbon Dates on the All American Man. American Antiquity 59 : 769781.CrossRefGoogle Scholar
Chase, A. F. 1985 Time Depth or Vacuum : The 11.3.0.0.0. Correlation and the Lowland Maya Postclassic. In Late Lowland Maya Civilization : Classic to Postclassic, edited by Sabloff, J. A. and W, E.. Andrews V, pp. 99140. University of New Mexico Press, Albuquerque.Google Scholar
Clottes, J. 1994 Dates Directes pour les Peintures Pal6olithiques. Bulletin de la Societe Prehistorique Francaise 91 : 5170.Google Scholar
Clottes, J. 1996 New Direct Dates for the Cosquer Cave. International Newsletter of Rock Art 15 : 21.Google Scholar
Clottes, J. 1998 The Three Cs' : Fresh Avenues Towards European Palaeolithic Art. In The Archaeology of Rock-Art, edited by Chippendale, C. and S, P.. C. Tacon, pp. 112129. Cambridge University Press, Cambridge, England.Google Scholar
Clottes, J. 1999a The Chauvet Cave Dates. In World History : Studies in the Memory of Grahame Clark, edited by Coles, J. M., Bewley, R. and Mellars, P., pp. 1319. Memoirs of the British Academy, London.Google Scholar
Clottes, J. 1999b Twenty Thousand Years of Palaeolithic Cave Art in Southern France. Proceedings of the British Academy 99 : 161175.Google Scholar
Clottes, J., Chauvet, J. M., Brunel-Duchamps, E., Hillaire, C., Daugas, J. P., Arnold, M., Clottes, H., Cachier, H., Evin, J., Fortin, P., Oberlin, C., Tisnerat, N., and Valladas, H. 1995 Radiocarbon Dates for the Chauvet-Pont-d'Arc Cave. International Newsletter of Rock Art 11 : 12.Google Scholar
Clottes, J., and Courtin, J. 1994 La Grotte Cosquer. Peintures et Gravures de la Caverne Engloutie. Editions de Seuil, Paris.Google Scholar
Clottes, J., Courtin, J., Collina-Girard, J., Arnold, M., and Valladas, H. 1997 News from Cosquer Cave : Climatic Studies, Recording, Sampling, Dates. Antiquity 71 : 321326.Google Scholar
Clottes, J., Courtin, J., and Valladas, H. 1992a A Well Dated Palaeolithic Cave : The Cosquer Cave at Marseilles. Rock Art Research 9 : 122129.Google Scholar
Clottes, J., Courtin, J., and Valladas, H. 1993 Des Mains Tres Anciennes. International Newsletter of Rock Art 4 : 3. Google Scholar
Clottes, J., Courtin, J., Valladas, H., Cachier, M., Mercier, N., and Arnold, M. 1992b La Grotte Cosquer Datee. Bulletin de la Societe Prehistorique Francaise 89 : 230234.Google Scholar
Clottes, J., Valladas, H., Cachier, M., and Arnold, M. 1992c Des Dates pour Niaux et Gargas. Bulletin de la Societe Prehistorique Francaise 89 : 270274.Google Scholar
Colas, P. R. 1998 Ritual and Politics in the Underworld. Mexicon XX (5) : 99104.Google Scholar
David, B. 1992 An AMS Date for Queensland Rock Art. Rock Art Research 9 : 139141.Google Scholar
David, B., Armitage, R. A. A., Hyman, M., Rowe, M. W., and Lawson, E. 1999 How Old is North Queensland Rock-Art? A Review of the Evidence, with New AMS Determinations. Archaeology of Oceania 34 : 103120.Google Scholar
Farrell, M. M., and Burton, J. F. 1992 Dating Tom Ketchum : The Role of Chronometric Determinations in Rock Art Analysis. North American Archaeologist 13 : 219247.Google Scholar
Fortea, J. 1996 The Cave of Covaciella (Carrena de Cabrales-Asturias- Spain). International Newsletter on Rock Art 13 : 13.Google Scholar
Geib, P. R., and Fairley, H. C. 1992 Radiocarbon Dating of Fremont Anthropomorphic Rock Art in Glen Canyon, South-Central Utah. Journal of Field Archaeology 19 : 155168.Google Scholar
Girard, M., Baffler, D., Valladas, H., and Hedges, R. 1995 C Dates at the Grande Grotte at Arcy-sur-Cure (Yonne, France). International Newsletter of Rock Art 12 : 12.Google Scholar
Hedges, R. E. M., Housley, R. A., Law, I. A., Perry, C., and Gowlett, J. A. J. 1987 Radiocarbon Dates from the Oxford AMS System : Archaeometry Datelist 6. Archaeometry 29 : 289306.Google Scholar
Hedges, R. E. M., Ramsey, C. B., van Klinken, G. J., Pettitt, P. B., Nielsen-Marsh, C., Etchegoyen, A., Fernandez Niello, J. O., Boschin, M. T., and Llamazares, A. M. 1998 Methodological Issues in the 14C Dating of Rock Paintings. Radiocarbon 40 : 35-14. Techne 5 : 6170.Google Scholar
Hyman, M., Sutherland, K., Armitage, R. A., Southon, J. R., and Rowe, M. W. 1999 Radiocarbon Analyses of Hueco Tanks Rock Paintings. Rock Art Research 16 : 7588.Google Scholar
Ilger, W. A., Dauvois, M., Hyman, M., Menu, M., Rowe, M. W., Vezian, J., and Walter, P. 1994 Datation Radiocarbone de Deux Figures Parie1 tales de la Grotte du Portel (Commune de Loubens, Ariege). Prehistoire Ariegeoise 50 : 231236.Google Scholar
Ilger, W. A., Hyman, M., Rowe, M. W. 1995 Dating Pictographs with Radiocarbon. Radiocarbon 37 : 299310.Google Scholar
Kelley, D. H. 1983 The Maya Calendar Correlation Problem. In Civilization in the Ancient Americas : Essays in Honor of Gordon R. Willey, edited by Leventhal, R. M. and Kolata, A.L. pp. 157208. University of New Mexico Press and Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, MA.Google Scholar
Kirner, D. L., Burky, R., Taylor, R. E., and Southon, J. R. 1997 Radiocarbon Dating Organic Residues at the Microgram Level. Nuclear Instrumentation and Methods B123 : 214217.Google Scholar
Lorblanchet, M. 1994a Cougnac. International Newsletter on Rock Art 1 : 61.Google Scholar
Lorblanchet, M. 1994b La Datation de Part Paleolithique. Bulletin de la SocUte du Lot 115 : 161182.Google Scholar
Lorblanchet, M., Cachier, H., and Valladas, H. 1995 Direct Date for One of the Pech-Merle Spotted Horses. International Newsletter on Rock Art 12 : 23.Google Scholar
Lounsbury, F. G. 1983 The Base of the Venus Table of the Dresden Codex and Its Significance for the Calendar-Correlation Problem. In Calendars inMesoamerica and Peru : Native American Computations of Time, edited by Aveni, A. and Brotherston, G., pp. 129. BAR International Series 174. British Archaeological Reports, Oxford, England.Google Scholar
Medina, E., Sternberg, L., and Cuevas, E. 1991 Vertical Stratification of 813C Values in Closed Natural and Plantation Forests in the Luquillo Mountains, Puerto Rico. Oecologia 87 : 369373.Google Scholar
Moure Romanillo, A., Gonzalez Sainz, C., Bernaldo de Quiros, F., Cabrera Valsez, V., and Valladas, H. 1997 New Absolute Dates for Pigments in Cantabrian Caves. International Newsletter of Rock Art 18 : 2629.Google Scholar
Pearson, A., McNichol, A. P., Schneider, R. J., von Reden, K. F., and Zheng, Y. 1998 Microscale AMS 14C Measurements at NOSAMS. Radiocarbon 40 : 6175.CrossRefGoogle Scholar
Prous, A. 1999 Dating Rock Art in Brazil. In Dating and the Earliest Known Rock Art, edited by. M. Strecker and P. Bahn, pp. 2934. Oxbow Books, Oxford, England.Google Scholar
Ripoll Lopez, S. 1994 The Paleolithic Rock Art of the Cueva de Ambrosio (Almeria, Spain). International Newsletter on Rock Art 7 : 12.Google Scholar
Russ, J., Hyman, M., Shafer, H. J., and Rowe, M. W. 1990 Radiocarbon Dating of Prehistoric Rock Paintings by Selective Oxidation of Organic Carbon. Nature 348 : 710711.Google Scholar
Schiffer, M. B. 1986 Radiocarbon Dating and the “Old Wood” Problem : The Case of the Hohokam Chronology. Journal of Archaeological Science 13 : 1330.Google Scholar
Sternberg, S. L., Moreira, M. Z., Martinelli, L. A., Victoria, R. L., Barbosa, E. M., Bonates, L. C. M., and Neostad, D. C. 1997 Carbon Dioxide Recycling in Two Amazonian Tropical Forests. Agricultural and Forest Meteorology 88 : 259268.CrossRefGoogle Scholar
Sternberg, S. L., Mulkey, S. S., and Wright, S. J. 1989 Ecological Interpretation of Leaf Carbon Isotope Ratios : Influence of Respired Carbon Dioxide. Ecology 70 : 13171324.Google Scholar
Stone, A. 1982 Recent Discoveries from Naj Tunich. Mexican 4 (5/6) : 9398.Google Scholar
Stone, A. 1995 Images from the Underworld : Naj Tunich and the Tradition of Maya Cave Painting. University of Texas Press, Austin.Google Scholar
Stuiver, M., and Reimer, P. J. 1993 A Computer Program for Radiocarbon Age Calibration. Radiocarbon 35 : 215230.Google Scholar
Trumbore, S. E., Davidson, E. A., De Camargo, P. B., Nepstad, D. C., and Martinelli, L. A. 1995 Belowground Cycling of Carbon in Forests and Pastures of Eastern Amazonia. Global Biogeochemical Cycles 9 : 515528.Google Scholar
Valladas, H., Cachier, H., and Arnold, M. 1990 AMS C-14 Dates for the Prehistoric Cougnac Cave Paintings and Related Bone Remains. Rock Art Research 7 : 1819.Google Scholar
Valladas, H., Cachier, H., Maurice, P., Bernaldo de Quiros, F., Clottes, J., Valdes, V. C., Uzquiano, P., and Arnold, M. 1992 Direct Radiocarbon Dates for the Prehistoric Paintings at the Altimira, El Castillo and Niaux Caves. Nature 357 : 6870.Google Scholar
van der Borg, K., Alderliesten, C., de Jong, A. F. M., van den Brink, A., de Haas, A. P., Kersemaekers, H. J. H., J. E., , and Raaymakers, M. J. 1997 Precision and Mass Fractionation in 14C Analysis with AMS. Nuclear Instrumentation and Methods B 123 : 97101.Google Scholar
van der Merwe, N. J., and Medina, E. 1989 Photosynthesis and C/ C Ratios in Amazonian Rain Forests. Geochimica et Cosmochimica Acta 53 : 10911094.Google Scholar
van der Merwe, N. J., Sealy, J., and Yates, R. 1987 First Accelerator Carbon-14 Date for Pigment from a Rock Painting. South African Journal of Science 83 : 5657.Google Scholar
Vogel, J. C. 1978 Recycling of Carbon in a Forest Environment. Oecologia Plantarum 13 : 8994.Google Scholar
Ware, G. A., and Brady, J. E. 1999 Multi-Spectral Analysis of Ancient Maya Pigments : Implications for the Naj Tunich Corpus. Center 19 : 132135.Google Scholar