Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T12:04:03.596Z Has data issue: false hasContentIssue false

Uncovering hidden patterns of design ideation using hidden Markov modeling and neuroimaging

Published online by Cambridge University Press:  27 February 2023

Mo Hu*
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, USA
Christopher McComb
Affiliation:
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
Kosa Goucher-Lambert
Affiliation:
Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, USA
*
Author for correspondence: Mo Hu, E-mail: mohu@berkeley.edu

Abstract

The study presented in this paper applies hidden Markov modeling (HMM) to uncover the recurring patterns within a neural activation dataset collected while designers engaged in a design concept generation task. HMM uses a probabilistic approach that describes data (here, fMRI neuroimaging data) as a dynamic sequence of discrete states. Without prior assumptions on the fMRI data's temporal and spatial properties, HMM enables an automatic inference on states in neurocognitive activation data that are highly likely to occur in concept generation. The states with a higher likelihood of occupancy show more activation in the brain regions from the executive control network, the default mode network, and the middle temporal cortex. Different activation patterns and transfers are associated with these states, linking to varying cognitive functions, for example, semantic processing, memory retrieval, executive control, and visual processing, that characterize possible transitions in cognition related to concept generation. HMM offers new insights into cognitive dynamics in design by uncovering the temporal and spatial patterns in neurocognition related to concept generation. Future research can explore new avenues of data analysis methods to investigate design neurocognition and provide a more detailed description of cognitive dynamics in design.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexiou, K, Zamenopoulos, T, Johnson, JH and Gilbert, SJ (2009) Exploring the neurological basis of design cognition using brain imaging: some preliminary results. Design Studies 30, 623647. doi:10.1016/j.destud.2009.05.002CrossRefGoogle Scholar
Anderson, JR (2012) Tracking problem solving by multivariate pattern analysis and Hidden Markov Model algorithms. Neuropsychologia 50, 487498. doi:10.1016/j.neuropsychologia.2011.07.025CrossRefGoogle ScholarPubMed
Anderson, JR, Betts, S, Ferris, JL and Fincham, JM (2010) Neural imaging to track mental states while using an intelligent tutoring system. Proceedings of the National Academy of Sciences 107, 70187023. doi:10.1073/pnas.1000942107CrossRefGoogle ScholarPubMed
Anderson, JR, Pyke, AA and Fincham, JM (2016) Hidden stages of cognition revealed in patterns of brain activation. Psychological Science 27, 12151226. doi:10.1177/0956797616654912CrossRefGoogle ScholarPubMed
Atman, CJ, Adams, RS, Cardella, ME, Turns, J, Mosborg, S and Saleem, J (2007) Engineering design processes: a comparison of students and expert practitioners. Journal of Engineering Education 96, 359379. doi:10.1002/j.2168-9830.2007.tb00945.xCrossRefGoogle Scholar
Bak, TH, O'Donovan, DG, Xuereb, JH, Boniface, S and Hodges, JR (2001) Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease-dementia-aphasia syndrome. Brain 124, 103120. doi:10.1093/brain/124.1.103CrossRefGoogle ScholarPubMed
Baker, AP, Brookes, MJ, Rezek, IA, Smith, SM, Behrens, T, Probert Smith, PJ and Woolrich, M (2014) Fast transient networks in spontaneous human brain activity. ELife 3, e01867. doi:10.7554/eLife.01867CrossRefGoogle ScholarPubMed
Baldassano, C, Chen, J, Zadbood, A, Pillow, JW, Hasson, U and Norman, KA (2017) Discovering event structure in continuous narrative perception and memory. Neuron 95, 709721.e5. doi:10.1016/j.neuron.2017.06.041CrossRefGoogle ScholarPubMed
Balters, S, Weinstein, T, Mayseless, N, Auernhammer, J, Hawthorne, G, Steinert, M, Meinel, C, Leifer, L and Reiss, AL (2023) Design science and neuroscience: a systematic review of the emergent field of design neurocognition. Design Studies 84, 101148. doi:10.1016/j.destud.2022.101148CrossRefGoogle Scholar
Beaty, RE, Benedek, M, Barry Kaufman, S and Silvia, PJ (2015) Default and executive network coupling supports creative idea production. Scientific Reports 5, 10964. doi:10.1038/srep10964CrossRefGoogle Scholar
Beaty, RE, Benedek, M, Silvia, PJ and Schacter, DL (2016) Creative cognition and brain network dynamics. Trends in Cognitive Sciences 20, 8795. doi:10.1016/j.tics.2015.10.004CrossRefGoogle ScholarPubMed
Beaty, RE, Kenett, YN, Christensen, AP, Rosenberg, MD, Benedek, M, Chen, Q, Fink, A, Qiu, J, Kwapil, TR, Kane, MJ and Silvia, PJ (2018) Robust prediction of individual creative ability from brain functional connectivity. Proceedings of the National Academy of Sciences 115, 10871092. doi:10.1073/pnas.1713532115CrossRefGoogle ScholarPubMed
Beaty, RE, Chen, Q, Christensen, AP, Kenett, YN, Silvia, PJ, Benedek, M and Schacter, DL (2020) Default network contributions to episodic and semantic processing during divergent creative thinking: a representational similarity analysis. NeuroImage 209, 116499. doi:10.1016/j.neuroimage.2019.116499CrossRefGoogle ScholarPubMed
Beckmann, CF (2012) Modelling with independent components. NeuroImage 62, 891901. doi:10.1016/j.neuroimage.2012.02.020CrossRefGoogle ScholarPubMed
Beckmann, CF and Smith, SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Transactions on Medical Imaging 23, 137152. doi:10.1109/TMI.2003.822821CrossRefGoogle ScholarPubMed
Benedek, M and Fink, A (2019) Toward a neurocognitive framework of creative cognition: the role of memory, attention, and cognitive control. Current Opinion in Behavioral Sciences 27, 116122. doi:10.1016/j.cobeha.2018.11.002CrossRefGoogle Scholar
Benedek, M, Beaty, R, Jauk, E, Koschutnig, K, Fink, A, Silvia, PJ, Dunst, B and Neubauer, AC (2014) Creating metaphors: the neural basis of figurative language production. NeuroImage 90, 99106. doi:10.1016/j.neuroimage.2013.12.046CrossRefGoogle ScholarPubMed
Benedek, M, Jung, RE and Vartanian, O (2018) The neural bases of creativity and intelligence: common ground and differences. Neuropsychologia 118, 13. doi:10.1016/j.neuropsychologia.2018.09.006CrossRefGoogle ScholarPubMed
Blumenfeld, RS, Parks, CM, Yonelinas, AP and Ranganath, C (2011) Putting the pieces together: the role of dorsolateral prefrontal cortex in relational memory encoding. Journal of Cognitive Neuroscience 23, 257265. doi:10.1162/jocn.2010.21459CrossRefGoogle ScholarPubMed
Brownell, E, Cagan, J and Kotovsky, K (2021) Only as strong as the strongest link: the relative contribution of individual team member proficiency in configuration design. Journal of Mechanical Design 143, 081402. doi:10.1115/1.4049338CrossRefGoogle Scholar
Buckner, RL, Andrews-Hanna, JR and Schacter, DL (2008) The brain's default network. Annals of the New York Academy of Sciences 1124, 138. doi:10.1196/annals.1440.011CrossRefGoogle ScholarPubMed
Bunge, SA, Kahn, I, Wallis, JD, Miller, EK and Wagner, AD (2003) Neural circuits subserving the retrieval and maintenance of abstract rules. Journal of Neurophysiology 90, 34193428. doi:10.1152/jn.00910.2002CrossRefGoogle ScholarPubMed
Burianova, H and Grady, CL (2007) Common and unique neural activations in autobiographical, episodic, and semantic retrieval. Journal of Cognitive Neuroscience 19, 15201534. doi:10.1162/jocn.2007.19.9.1520CrossRefGoogle ScholarPubMed
Burle, B, Spieser, L, Roger, C, Casini, L, Hasbroucq, T and Vidal, F (2015) Spatial and temporal resolutions of EEG: is it really black and white? A scalp current density view. International Journal of Psychophysiology 97, 210220. doi:10.1016/j.ijpsycho.2015.05.004CrossRefGoogle Scholar
Chan, J and Schunn, C (2015) The impact of analogies on creative concept generation: lessons from an in vivo study in engineering design. Cognitive Science 39, 126155. doi:10.1111/cogs.12127CrossRefGoogle Scholar
Chatham, CH, Herd, SA, Brant, AM, Hazy, TE, Miyake, A, O'Reilly, R and Friedman, NP (2011) From an executive network to executive control: a computational model of the n-back task. Journal of Cognitive Neuroscience 23, 35983619. doi:10.1162/jocn_a_00047CrossRefGoogle Scholar
Chiu, I and Shu, LH (2011) Potential limitations of verbal protocols in design experiments. 287–296. doi:10.1115/DETC2010-28675CrossRefGoogle Scholar
Christoff, K, Prabhakaran, V, Dorfman, J, Zhao, Z, Kroger, JK, Holyoak, KJ and Gabrieli, JDE (2001) Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage 14, 11361149. doi:10.1006/nimg.2001.0922CrossRefGoogle ScholarPubMed
Chu, RM and Black, KL (2012) Current surgical management of high-grade gliomas. In Quiñones-Hinojosa, A (ed.), Schmidek and Sweet Operative Neurosurgical Techniques, 6th Edn. W.B. Saunders, pp. 105110. doi:10.1016/B978-1-4160-6839-6.10008-5CrossRefGoogle Scholar
Clarke, S and Miklossy, J (1990) Occipital cortex in man: organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. Journal of Comparative Neurology 298, 188214. doi:10.1002/cne.902980205CrossRefGoogle ScholarPubMed
Cramer-Petersen, CL, Christensen, BT and Ahmed-Kristensen, S (2019) Empirically analysing design reasoning patterns: abductive-deductive reasoning patterns dominate design idea generation. Design Studies 60, 3970. doi:10.1016/j.destud.2018.10.001CrossRefGoogle Scholar
Cross, N (2001) Chapter 5 - design cognition: results from protocol and other empirical studies of design activity. In Eastman, CM McCracken, WM and Newstetter, WC (eds), Design Knowing and Learning: Cognition in Design Education. Elsevier Science, pp. 79103. doi:10.1016/B978-008043868-9/50005-XCrossRefGoogle Scholar
Curtis, CE and D'Esposito, M (2003) Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences 7, 415423. doi:10.1016/S1364-6613(03)00197-9CrossRefGoogle ScholarPubMed
De Dreu, CKW, Nijstad, BA, Baas, M, Wolsink, I and Roskes, M (2012) Working memory benefits creative insight, musical improvisation, and original ideation through maintained task-focused attention. Personality and Social Psychology Bulletin 38, 656669. doi:10.1177/0146167211435795CrossRefGoogle ScholarPubMed
Dinar, M, Shah, JJ, Cagan, J, Leifer, L, Linsey, J, Smith, SM and Hernandez, NV (2015) Empirical studies of designer thinking: past, present, and future. Journal of Mechanical Design 137. doi:10.1115/1.4029025CrossRefGoogle Scholar
Elam, J, Reid, E, Harwell, J, Schindler, J, Coalson, T, Glasser, M, Horton, W, Curtiss, Y, Dierker, D, Gu, P and Essen, DCV (2013) Connectome Workbench Beta v0.7 Tutorial.Google Scholar
Ellamil, M, Dobson, C, Beeman, M and Christoff, K (2012) Evaluative and generative modes of thought during the creative process. NeuroImage 59, 17831794. doi:10.1016/j.neuroimage.2011.08.008CrossRefGoogle ScholarPubMed
Farovik, A, Place, RJ, McKenzie, S, Porter, B, Munro, CE and Eichenbaum, H (2015) Orbitofrontal cortex encodes memories within value-based schemas and represents contexts that guide memory retrieval. Journal of Neuroscience 35, 83338344. doi:10.1523/JNEUROSCI.0134-15.2015CrossRefGoogle ScholarPubMed
Fink, A, Benedek, M, Grabner, RH, Staudt, B and Neubauer, AC (2007) Creativity meets neuroscience: experimental tasks for the neuroscientific study of creative thinking. Methods 42, 6876. doi:10.1016/j.ymeth.2006.12.001CrossRefGoogle ScholarPubMed
Forbus, KD, Gentner, D and Law, K (1995) MAC/FAC: a model of similarity-based retrieval. Cognitive Science 19, 141205. doi:10.1207/s15516709cog1902_1CrossRefGoogle Scholar
Frankland, PW, Josselyn, SA and Köhler, S (2019) The neurobiological foundation of memory retrieval. Nature Neuroscience 22, 15761585. doi:10.1038/s41593-019-0493-1CrossRefGoogle ScholarPubMed
Fu, KK, Sylcott, B and Das, K (2019) Using fMRI to deepen our understanding of design fixation. Design Science 5. doi:10.1017/dsj.2019.21CrossRefGoogle Scholar
Gericke, K and Blessing, L (2011) Comparisons of design methodologies and process models across disciplines: a literature review. In 18th International Conference on Engineering Design - Impacting Society Through Engineering Design, Vol. 1, pp. 393–404.Google Scholar
Gernsbacher, MA and Kaschak, MP (2003) Neuroimaging studies of language production and comprehension. Annual Review of Psychology 54, 91114. doi:10.1146/annurev.psych.54.101601.145128CrossRefGoogle ScholarPubMed
Gero, JS and Milovanovic, J (2020) A framework for studying design thinking through measuring designers’ minds, bodies and brains. Design Science 6. doi:10.1017/dsj.2020.15CrossRefGoogle Scholar
Gerver, C, Griffin, J, Dennis, N and Beaty, R (2022) Memory and creativity: a meta-analytic examination of the relationship between memory systems and creative cognition. doi:10.31234/osf.io/ag5q9CrossRefGoogle Scholar
Gilhooly, KJ, Fioratou, E, Anthony, SH and Wynn, V (2007) Divergent thinking: strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology (London, England: 1953) 98, 611625. doi:10.1111/j.2044-8295.2007.tb00467.xCrossRefGoogle ScholarPubMed
Giraud, AL, Kell, C, Thierfelder, C, Sterzer, P, Russ, MO, Preibisch, C and Kleinschmidt, A (2004) Contributions of sensory input, auditory search and verbal comprehension to cortical activity during speech processing. Cerebral Cortex 14, 247255. doi:10.1093/cercor/bhg124CrossRefGoogle ScholarPubMed
Goel, V and Grafman, J (2000) Role of the right prefrontal cortex in ill-structured planning. Cognitive Neuropsychology 17, 415436. doi:10.1080/026432900410775CrossRefGoogle ScholarPubMed
Goldberg, RF, Perfetti, CA, Fiez, JA and Schneider, W (2007) Selective retrieval of abstract semantic knowledge in left prefrontal cortex. Journal of Neuroscience 27, 37903798. doi:10.1523/JNEUROSCI.2381-06.2007CrossRefGoogle ScholarPubMed
Goldschmidt, G and Rodgers, PA (2013) The design thinking approaches of three different groups of designers based on self-reports. Design Studies 34, 454471. doi:10.1016/j.destud.2013.01.004CrossRefGoogle Scholar
Gomes, P, Seco, N, Pereira, FC, Paiva, P, Carreiro, P, Ferreira, JL and Bento, C (2006) The importance of retrieval in creative design analogies. Knowledge-Based Systems 19, 480488. doi:10.1016/j.knosys.2006.04.006CrossRefGoogle Scholar
Gonen-Yaacovi, G, de Souza, L, Levy, R, Urbanski, M, Josse, G and Volle, E (2013) Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data. Frontiers in Human Neuroscience 7. https://www.frontiersin.org/article/10.3389/fnhum.2013.00465CrossRefGoogle ScholarPubMed
Goucher-Lambert, K and Cagan, J (2019) Crowdsourcing inspiration: using crowd generated inspirational stimuli to support designer ideation. Design Studies 61, 129. doi:10.1016/j.destud.2019.01.001CrossRefGoogle Scholar
Goucher-Lambert, K and McComb, C (2019) Using hidden markov models to uncover underlying states in neuroimaging data for a design ideation task. Proceedings of the Design Society: international Conference on Engineering Design 1, 18731882. doi:10.1017/dsi.2019.193Google Scholar
Goucher-Lambert, K, Moss, J and Cagan, J (2017 a) A meta-analytic approach for uncovering neural activation patterns of sustainable product preference decisions. In Gero, JS (ed.), Design Computing and Cognition ‘16. Springer International Publishing, pp. 173191. doi:10.1007/978-3-319-44989-0_10CrossRefGoogle Scholar
Goucher-Lambert, K, Moss, J and Cagan, J (2017 b) Inside the mind: using neuroimaging to understand moral product preference judgments involving sustainability. Journal of Mechanical Design 139, 041103041111. doi:10.1115/1.4035859CrossRefGoogle Scholar
Goucher-Lambert, K, Moss, J and Cagan, J (2019) A neuroimaging investigation of design ideation with and without inspirational stimuli—understanding the meaning of near and far stimuli. Design Studies 60, 138. doi:10.1016/j.destud.2018.07.001CrossRefGoogle Scholar
Green, AE, Kraemer, DJM, Fugelsang, JA, Gray, JR and Dunbar, KN (2010) Connecting long distance: semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex 20, 7076. doi:10.1093/cercor/bhp081CrossRefGoogle ScholarPubMed
Green, AE, Cohen, MS, Raab, HA, Yedibalian, CG and Gray, JR (2015) Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Human Brain Mapping 36, 923934. doi:10.1002/hbm.22676CrossRefGoogle ScholarPubMed
Hao, X, Cui, S, Li, W, Yang, W, Qiu, J and Zhang, Q (2013) Enhancing insight in scientific problem solving by highlighting the functional features of prototypes: an fMRI study. Brain Research 1534, 4654. doi:10.1016/j.brainres.2013.08.041CrossRefGoogle ScholarPubMed
Hay, L, Duffy, AHB, McTeague, C, Pidgeon, LM, Vuletic, T and Grealy, M (2017) A systematic review of protocol studies on conceptual design cognition: design as search and exploration. Design Science 3. doi:10.1017/dsj.2017.11CrossRefGoogle Scholar
Hay, L, Duffy, AHB, Gilbert, SJ, Lyall, L, Campbell, G, Coyle, D and Grealy, MA (2019) The neural correlates of ideation in product design engineering practitioners. Design Science 5. doi:10.1017/dsj.2019.27CrossRefGoogle Scholar
Hay, L, Duffy, AHB, Gilbert, SJ and Grealy, MA (2022) Functional magnetic resonance imaging (fMRI) in design studies: methodological considerations, challenges, and recommendations. Design Studies 78, 101078. doi:10.1016/j.destud.2021.101078CrossRefGoogle Scholar
Heinonen, J, Numminen, J, Hlushchuk, Y, Antell, H, Taatila, V and Suomala, J (2016) Default mode and executive networks areas: association with the serial order in divergent thinking. PLoS One 11, e0162234. doi:10.1371/journal.pone.0162234CrossRefGoogle ScholarPubMed
Hindriks, R, Adhikari, MH, Murayama, Y, Ganzetti, M, Mantini, D, Logothetis, NK and Deco, G (2016) Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? NeuroImage 127, 242256. doi:10.1016/j.neuroimage.2015.11.055CrossRefGoogle ScholarPubMed
Hobeika, L, Diard-Detoeuf, C, Garcin, B, Levy, R and Volle, E (2016) General and specialized brain correlates for analogical reasoning: a meta-analysis of functional imaging studies. Human Brain Mapping 37, 19531969. doi:10.1002/hbm.23149CrossRefGoogle ScholarPubMed
Howard, TJ, Culley, SJ and Dekoninck, E (2008) Describing the creative design process by the integration of engineering design and cognitive psychology literature. Design Studies 29, 160180. doi:10.1016/j.destud.2008.01.001CrossRefGoogle Scholar
Hu, M and Shealy, T (2019) Application of functional near-infrared spectroscopy to measure engineering decision-making and design cognition: literature review and synthesis of methods. Journal of Computing in Civil Engineering 33, 04019034. doi:10.1061/(ASCE)CP.1943-5487.0000848CrossRefGoogle Scholar
Hu, M and Shealy, T (2020) Overcoming status quo bias for resilient stormwater infrastructure: empirical evidence in neurocognition and decision-making. Journal of Management in Engineering 36, 04020017. doi:10.1061/(ASCE)ME.1943-5479.0000771CrossRefGoogle Scholar
Hu, M and Shealy, T (2022) Priming engineers to think about sustainability: cognitive and neuro-cognitive evidence to support the adoption of green stormwater design. Frontiers in Neuroscience 16. doi:10.3389/fnins.2022.896347CrossRefGoogle ScholarPubMed
Hu, M, Shealy, T, Grohs, J and Panneton, R (2019) Empirical evidence that concept mapping reduces neurocognitive effort during concept generation for sustainability. Journal of Cleaner Production 238, 117815. doi:10.1016/j.jclepro.2019.117815CrossRefGoogle Scholar
Hu, M, Shealy, T and Milovanovic, J (2021) Cognitive differences among first-year and senior engineering students when generating design solutions with and without additional dimensions of sustainability. Design Science 7. doi:10.1017/dsj.2021.3CrossRefGoogle Scholar
Kounios, J, Frymiare, JL, Bowden, EM, Fleck, JI, Subramaniam, K, Parrish, TB and Jung-Beeman, M (2006) The prepared mind: neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science 17, 882890. doi:10.1111/j.1467-9280.2006.01798.xCrossRefGoogle ScholarPubMed
Kowatari, Y, Lee, SH, Yamamura, H, Nagamori, Y, Levy, P, Yamane, S and Yamamoto, M (2009) Neural networks involved in artistic creativity. Human Brain Mapping 30, 16781690. doi:10.1002/hbm.20633CrossRefGoogle ScholarPubMed
Leech, R and Sharp, DJ (2014) The role of the posterior cingulate cortex in cognition and disease. Brain 137, 1232. doi:10.1093/brain/awt162CrossRefGoogle ScholarPubMed
Liu, L, Li, Y, Xiong, Y, Cao, J and Yuan, P (2018) An EEG study of the relationship between design problem statements and cognitive behaviors during conceptual design. AI EDAM 32, 351362. doi:10.1017/S0890060417000683Google Scholar
Marcus, DS, Harms, MP, Snyder, AZ, Jenkinson, M, Wilson, JA, Glasser, MF, Barch, DM, Archie, KA, Burgess, GC, Ramaratnam, M, Hodge, M, Horton, W, Herrick, R, Olsen, T, McKay, M, House, M, Hileman, M, Reid, E, Harwell, J and Van Essen, DC (2013) Human connectome project informatics: quality control, database services, and data visualization. NeuroImage 80, 202219. doi:10.1016/j.neuroimage.2013.05.077CrossRefGoogle ScholarPubMed
McComb, C, Cagan, J and Kotovsky, K (2016) Utilizing Markov chains to understand operation sequencing in design tasks. In Design Computing and Cognition ‘16.Google Scholar
McComb, C, Cagan, J and Kotovsky, K (2017 a) Capturing human sequence-learning abilities in configuration design tasks through Markov chains. Journal of Mechanical Design 139. doi:10.1115/1.4037185CrossRefGoogle Scholar
McComb, C, Cagan, J and Kotovsky, K (2017 b) Mining process heuristics from designer action data via hidden Markov models. Journal of Mechanical Design 139. doi:10.1115/1.4037308CrossRefGoogle Scholar
Mednick, S (1962) The associative basis of the creative process. Psychological Review 69, 220232. doi:10.1037/h0048850CrossRefGoogle ScholarPubMed
Mehta, P, Malviya, M, McComb, C, Manogharan, G and Berdanier, CGP (2020) Mining design heuristics for additive manufacturing via eye-tracking methods and hidden markov modeling. Journal of Mechanical Design 142. doi:10.1115/1.4048410CrossRefGoogle Scholar
Mirabito, Y and Goucher-Lambert, K (2021) Factors impacting highly innovative designs: idea fluency, timing, and order. Journal of Mechanical Design 144. doi:10.1115/1.4051683Google Scholar
Newman, SD, Lee, D and Ratliff, KL (2009) Off-line sentence processing: what is involved in answering a comprehension probe? Human Brain Mapping 30, 24992511. doi:10.1002/hbm.20684CrossRefGoogle ScholarPubMed
O'Bryan, SR, Walden, E, Serra, MJ and Davis, T (2018) Rule activation and ventromedial prefrontal engagement support accurate stopping in self-paced learning. NeuroImage 172, 415426. doi:10.1016/j.neuroimage.2018.01.084CrossRefGoogle ScholarPubMed
Paniukov, D and Davis, T (2018) The evaluative role of rostrolateral prefrontal cortex in rule-based category learning. NeuroImage 166, 1931. doi:10.1016/j.neuroimage.2017.10.057CrossRefGoogle ScholarPubMed
Papademetris, X, Jackowski, MP, Rajeevan, N, DiStasio, M, Okuda, H, Constable, RT and Staib, LH (2006) Bioimage suite: an integrated medical image analysis suite: an update. The Insight Journal 2006, 209. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213804/Google ScholarPubMed
Pohle, J, Langrock, R, van Beest, FM and Schmidt, NM (2017) Selecting the number of states in hidden Markov models: pragmatic solutions illustrated using animal movement. Journal of Agricultural, Biological, and Environmental Statistics 22, 270293. https://www.jstor.org/stable/26448341CrossRefGoogle Scholar
Quaresima, V and Ferrari, M (2019) Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: a concise review. Organizational Research Methods 22, 4668. doi:10.1177/1094428116658959CrossRefGoogle Scholar
Ralph, MAL, Jefferies, E, Patterson, K and Rogers, TT (2017) The neural and computational bases of semantic cognition. Nature Reviews Neuroscience 18, 4255. doi:10.1038/nrn.2016.150CrossRefGoogle ScholarPubMed
Rogers, J (1996) DeMAID/GA - an enhanced design manager's aid for intelligent decomposition. In 6th Symposium on Multidisciplinary Analysis and Optimization. American Institute of Aeronautics and Astronautics. doi:10.2514/6.1996-4157CrossRefGoogle Scholar
Rudorf, S and Hare, TA (2014) Interactions between dorsolateral and ventromedial prefrontal cortex underlie context-dependent stimulus valuation in goal-directed choice. Journal of Neuroscience 34, 1598815996. doi:10.1523/JNEUROSCI.3192-14.2014CrossRefGoogle ScholarPubMed
Sahin, NT, Pinker, S and Halgren, E (2006) Abstract grammatical processing of nouns and verbs in Broca's area: evidence from fMRI. Cortex 42, 540562. doi:10.1016/S0010-9452(08)70394-0CrossRefGoogle ScholarPubMed
Sen, C, Ameri, F and Summers, JD (2010) An entropic method for sequencing discrete design decisions. Journal of Mechanical Design 132. doi:10.1115/1.4002387CrossRefGoogle Scholar
Shealy, T and Gero, J (2019) The neurocognition of three engineering concept generation techniques. Proceedings of the Design Society: International Conference on Engineering Design 1, 18331842. doi:10.1017/dsi.2019.189Google Scholar
Shealy, T, Gero, J, Hu, M and Milovanovic, J (2020) Concept generation techniques change patterns of brain activation during engineering design. Design Science 6, E31A. Ternary hybrid EEG-NIRS brain-computer interface for the classification of brain activation patterns during mental arithmetic, motor imagery, and Idle State. doi:10.1017/dsj.2020.30CrossRefGoogle Scholar
Shen, W, Yuan, Y, Liu, C and Luo, J (2017) The roles of the temporal lobe in creative insight: an integrated review. Thinking & Reasoning 23, 321375. doi:10.1080/13546783.2017.1308885CrossRefGoogle Scholar
Shen, W, Tong, Y, Li, F, Yuan, Y, Hommel, B, Liu, C and Luo, J (2018) Tracking the neurodynamics of insight: a meta-analysis of neuroimaging studies. Biological Psychology 138, 189198. doi:10.1016/j.biopsycho.2018.08.018CrossRefGoogle ScholarPubMed
Smith, SM, Hyvärinen, A, Varoquaux, G, Miller, KL and Beckmann, CF (2014) Group-PCA for very large fMRI datasets. NeuroImage 101, 738749. doi:10.1016/j.neuroimage.2014.07.051CrossRefGoogle ScholarPubMed
Smith, SM, Nichols, TE, Vidaurre, D, Winkler, AM, Behrens, TEJ, Glasser, MF, Ugurbil, K, Barch, DM, Van Essen, DC and Miller, KL (2015) A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nature Neuroscience 18, 15651567. doi:10.1038/nn.4125CrossRefGoogle ScholarPubMed
Suk, H-I, Wee, C-Y, Lee, S-W and Shen, D (2016) State-space model with deep learning for functional dynamics estimation in resting-state fMRI. NeuroImage 129, 292307. doi:10.1016/j.neuroimage.2016.01.005CrossRefGoogle ScholarPubMed
Sylcott, B, Cagan, J and Tabibnia, G (2013) Understanding consumer tradeoffs between form and function through metaconjoint and cognitive neuroscience analyses. Journal of Mechanical Design 135. doi:10.1115/1.4024975CrossRefGoogle Scholar
True, GH (1956) Creativity as a Function of Idea Fluency, Practicability, and Specific Training (PhD). Iowa, USA: The University of Iowa.Google Scholar
Uddin, LQ (2015) Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience 16, 5561. doi:10.1038/nrn3857CrossRefGoogle ScholarPubMed
van der Meer, JN, Breakspear, M, Chang, LJ, Sonkusare, S and Cocchi, L (2020) Movie viewing elicits rich and reliable brain state dynamics. Nature Communications 11, 5004. doi:10.1038/s41467-020-18717-wCrossRefGoogle Scholar
Vidaurre, D (2021) A new model for simultaneous dimensionality reduction and time-varying functional connectivity estimation. PLOS Computational Biology 17, e1008580. doi:10.1371/journal.pcbi.1008580CrossRefGoogle ScholarPubMed
Vidaurre, D, Quinn, AJ, Baker, AP, Dupret, D, Tejero-Cantero, A and Woolrich, MW (2016) Spectrally resolved fast transient brain states in electrophysiological data. NeuroImage 126, 8195. doi:10.1016/j.neuroimage.2015.11.047CrossRefGoogle ScholarPubMed
Vidaurre, D, Smith, SM and Woolrich, MW (2017) Brain network dynamics are hierarchically organized in time. Proceedings of the National Academy of Sciences 114, 1282712832. doi:10.1073/pnas.1705120114CrossRefGoogle ScholarPubMed
Vidaurre, D, Abeysuriya, R, Becker, R, Quinn, AJ, Alfaro-Almagro, F, Smith, SM and Woolrich, MW (2018) Discovering dynamic brain networks from big data in rest and task. NeuroImage 180, 646656. doi:10.1016/j.neuroimage.2017.06.077CrossRefGoogle ScholarPubMed
Vieira, S, Gero, JS, Delmoral, J, Gattol, V, Fernandes, C, Parente, M and Fernandes, AA (2020) The neurophysiological activations of mechanical engineers and industrial designers while designing and problem-solving. Design Science 6. doi:10.1017/dsj.2020.26CrossRefGoogle Scholar
Vieira, S, Benedek, M, Gero, J, Li, S and Cascini, G (2022 a) Brain activity in constrained and open design: the effect of gender on frequency bands. AI EDAM 36, e6. doi:10.1017/S0890060421000202Google Scholar
Vieira, S, Benedek, M, Gero, J, Li, S and Cascini, G (2022 b) Design spaces and EEG frequency band power in constrained and open design. International Journal of Design Creativity and Innovation 0, 128. doi:10.1080/21650349.2022.2048697Google Scholar
Wallis, JD and Miller, EK (2003) From rule to response: neuronal processes in the premotor and prefrontal Cortex. Journal of Neurophysiology 90, 17901806. doi:10.1152/jn.00086.2003CrossRefGoogle ScholarPubMed
Westphal, AJ, Reggente, N, Ito, KL and Rissman, J (2016) Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval. Human Brain Mapping 37, 896912. doi: 10.1002/hbm.v37.3CrossRefGoogle ScholarPubMed
Yakoni, T (2022) Neurosynth. https://neurosynth.org/Google Scholar
Yang, MC (2009) Observations on concept generation and sketching in engineering design. Research in Engineering Design 20, 111. doi:10.1007/s00163-008-0055-0CrossRefGoogle Scholar
Yarkoni, T, Poldrack, RA, Nichols, TE, Van Essen, DC and Wager, TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nature Methods 8, 665670. doi:10.1038/nmeth.1635CrossRefGoogle ScholarPubMed
Young, JJ and Shapiro, ML (2011) The orbitofrontal cortex and response selection. Annals of the New York Academy of Sciences 1239, 2532. doi:10.1111/j.1749-6632.2011.06279.xCrossRefGoogle ScholarPubMed
Zhao, Q, Zhou, Z, Xu, H, Chen, S, Xu, F, Fan, W and Han, L (2013) Dynamic neural network of insight: a functional magnetic resonance imaging study on solving Chinese ‘Chengyu’ riddles. PLoS One 8, e59351. doi:10.1371/journal.pone.0059351CrossRefGoogle Scholar
Zhao, M, Jia, W, Yang, D, Nguyen, P, Nguyen, TA and Zeng, Y (2020) A tEEG framework for studying designer's cognitive and affective states. Design Science 6. doi:10.1017/dsj.2020.28CrossRefGoogle Scholar