Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:58:39.937Z Has data issue: false hasContentIssue false

Longitudinal patterns and sociodemographic profiles of health-related behaviour clustering among middle-aged and older adults in China and Japan

Published online by Cambridge University Press:  14 February 2023

Min Wu
Affiliation:
Department of Medical Statistics and Epidemiology, Sun Yat-sen University, Guangzhou, China Global Health Institute, School of Public Health, Institute of State Governance, Sun Yat-sen University, Guangzhou, China
Conghui Yang
Affiliation:
Department of Medical Statistics and Epidemiology, Sun Yat-sen University, Guangzhou, China Global Health Institute, School of Public Health, Institute of State Governance, Sun Yat-sen University, Guangzhou, China
Yu'an Zhang
Affiliation:
Department of Medical Statistics and Epidemiology, Sun Yat-sen University, Guangzhou, China
Maki Umeda
Affiliation:
Research Institute of Nursing Care for People and Community, University of Hyogo, Kobe, Japan
Jing Liao*
Affiliation:
Department of Medical Statistics and Epidemiology, Sun Yat-sen University, Guangzhou, China Global Health Institute, School of Public Health, Institute of State Governance, Sun Yat-sen University, Guangzhou, China
Claire Mawditt
Affiliation:
NHS England, Leeds, UK
*
*Corresponding author. Email: liaojing5@mail.sysu.edu.cn

Abstract

Given inevitable age-related decreases in physical or mental capacity, studies on health-related behaviour (HRB) clustering in older people provide an opportunity to reduce health-care costs and promote healthy ageing. This study explores the clustering of HRBs and transition probabilities of cluster memberships over time, and compares sociodemographic characteristics of these clusters among Chinese and Japanese middle-aged and older adults. Using the China Health and Retirement Longitudinal Study (CHARLS) from 2011 to 2015 (N = 19614) and the Japanese Study of Ageing and Retirement (JSTAR) from 2007 to 2011 (N = 7,080), Latent Transition Analysis was applied to investigate the clustering and change in clustering memberships of smoking, alcohol consumption, physical activity and body mass index. Multivariate logistic regression was used to explore the sociodemographic characteristics of these longitudinal HRB cluster members. We identified four common clusters in CHARLS and JSTAR: ‘smoking’, ‘overweight or obese’, ‘healthy lifestyle’ and ‘current smoking with drinking’, and an additional cluster named ‘ex-smoking with drinking’ in JSTAR. Although HRB cluster members were largely stable in both cohorts, participants in China tended to move towards an unhealthy lifestyle, while participants in Japan did the opposite. We also found that participants who smoked and drank were more likely to be male, younger, less educated and unmarried in both cohorts, but the overweight or obese participants were female, urban and higher income in CHARLS but not JSTAR. Our study not only contributes to the knowledge of longitudinal changes in health-related behavioural clustering patterns in an Asian elderly population, but may also facilitate the design of targeted multi-behavioural interventions to promote healthy lifestyles among older people in both countries.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, R, Wu, W, Dong, W, Liu, J, Yang, L and Lyu, J (2020) Forecasting the populations of overweight and obese Chinese adults. Diabetes, Metabolic Syndrome and Obesity 13, 48494857.CrossRefGoogle ScholarPubMed
Burgard, SA, Lin, K, Segal, BD, Elliott, MR and Seelye, S (2018) Stability and change in health behavior profiles of U.S. adults. Journals of Gerontology: Series B 75, 674683.CrossRefGoogle Scholar
Campostrini, S and McQueen, DV (2003) Creating a synthetic behavioural risk factor index to assess trends in surveillance data. In McQueen, DV and Puska, P (eds). Global Behavioral Risk Factor Surveillance. Boston, MA: Springer, pp. 112.Google Scholar
Chen, Z, Peto, R, Zhou, M, Iona, A, Smith, M, Yang, L, Guo, Y, Chen, Y, Bian, Z, Lancaster, G, Sherliker, P, Pang, S, Wang, H, Su, H, Wu, M, Wu, X, Chen, J, Collins, R, Li, L and China Kadoorie Biobank (CKB) Collaborative Group (2015) Contrasting male and female trends in tobacco-attributed mortality in China: evidence from successive nationwide prospective cohort studies. Lancet 386, 14471456.CrossRefGoogle Scholar
Chen, R, Xu, P, Song, P, Wang, M and He, J (2019) China has faster pace than Japan in population aging in next 25 years. BioScience Trends 13, 287291.CrossRefGoogle ScholarPubMed
Cho, HJ, Khang, YH, Jun, HJ and Kawachi, I (2008) Marital status and smoking in Korea: the influence of gender and age. Social Science & Medicine 66, 609619.CrossRefGoogle ScholarPubMed
Chou, KL (2008) The prevalence and clustering of four major lifestyle risk factors in Hong Kong Chinese older adults. Journal of Aging and Health 20, 788803.CrossRefGoogle ScholarPubMed
Collins, LM and Lanza, ST (2010) Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences. Hoboken, N.J: Wiley, pp. 279–310.Google Scholar
Dinsa, GD, Goryakin, Y, Fumagalli, E and Suhrcke, M (2012) Obesity and socioeconomic status in developing countries: a systematic review. Obesity Reviews 13, 10671079.CrossRefGoogle ScholarPubMed
Enders, CK (2010) Applied Missing Data Analysis. New York, NY: The Guilford Press.Google Scholar
Ferrari, G, Werneck, AO, Silva, DR, Kovalskys, I, Gómez, G, Rigotti, A, Cortés, LY, García, MY, Liria, M, Herrera-Cuenca, M, Zimberg, IZ, Guajardo, V, Pratt, M, Cristi-Montero, C, Marques, A, Peralta, M, Bolados, CC, Leme, ACB, Rollo, S, Fisberg, M and ELANS Study Group (2021) Agreement between self-reported and device-based sedentary time among eight countries: findings from the ELANS. Prevention Science 22, 10361047.CrossRefGoogle ScholarPubMed
Goodhind, A, Gilchrist, K and Memon, A (2014) Clustering of unhealthy behaviours over time: an analysis of health and wellbeing surveys in Southeast England, 2003 and 2012. European Journal of Public Health 24.CrossRefGoogle Scholar
Goto, R, Takahashi, Y and Ida, T (2011) Changes in smokers’ attitudes toward intended cessation attempts in Japan. Value in Health 14, 785791.CrossRefGoogle ScholarPubMed
Hidehiko, I, Satoshi, S and Hideki, H (2009) JSTAR first results 2009 report. Discussion Papers. Research Institute of Economy, Trade and Industry (RIETI) and Institute for International Policy Studies (IIPS), pp. 9–47.Google Scholar
Hsu, HC, Luh, DL, Chang, WC and Pan, LY (2013) Joint trajectories of multiple health-related behaviors among the elderly. International Journal of Public Health 58, 109120.CrossRefGoogle ScholarPubMed
Jensen, MK, Sorensen, TI, Andersen, AT, Thorsen, T, Tolstrup, JS, Godtfredsen, NS and Gronbaek, M (2003) A prospective study of the association between smoking and later alcohol drinking in the general population. Addiction 98, 355363.CrossRefGoogle ScholarPubMed
Kim, S, Symons, M and Popkin, BM (2004) Contrasting socioeconomic profiles related to healthier lifestyles in China and the United States. American Journal of Epidemiology 159, 184191.CrossRefGoogle ScholarPubMed
Kohro, T, Furui, Y, Mitsutake, N, Fujii, R, Morita, H, Oku, S, Ohe, K and Nagai, R (2008) The Japanese national health screening and intervention program aimed at preventing worsening of the metabolic syndrome. International Heart Journal 49, 193203.CrossRefGoogle ScholarPubMed
Lai, TF, Lin, CY, Chou, CC, Huang, WC, Hsueh, MC, Park, JH and Liao, Y (2020) Independent and joint associations of physical activity and dietary behavior with older adults’ lower limb strength. Nutrients 12.CrossRefGoogle ScholarPubMed
Lei, SZ, Jiaxin, G and Qiang, F (2021) Social change and health inequalities – evidence from the fifth phase of the epidemiologic transition in urban China. Sociological Studies 38, 2.Google Scholar
Li, M, Okamoto, R and Shirai, F (2019) Factors associated with smoking cessation and relapse in the Japanese smoking cessation treatment program: a prospective cohort study based on financial support in Suita City, Japan. Tobacco Induced Diseases 17, 71.CrossRefGoogle Scholar
Li, SJ, Yin, YT, Cui, GH and Xu, HL (2020) The associations among health-promoting lifestyle, eHealth literacy, and cognitive health in older Chinese adults: a cross-sectional study. International Journal of Environmental Research and Public Health 17, 2263.CrossRefGoogle ScholarPubMed
Liao, J, Mawditt, C, Scholes, S, Lu, W and Mejía, S (2019) Similarities and differences in health-related behavior clustering among older adults in Eastern and Western countries: a latent class analysis of global aging cohorts. Geriatrics & Gerontology International 19, 930937.CrossRefGoogle ScholarPubMed
Lindström, M (2010) Social capital, economic conditions, marital status and daily smoking: a population-based study. Public Health 124, 7177.CrossRefGoogle ScholarPubMed
Loef, M and Walach, H (2012) The combined effects of healthy lifestyle behaviors on all cause mortality: a systematic review and meta-analysis. Preventive Medicine 55, 163170.CrossRefGoogle ScholarPubMed
Manuel, DG, Bennett, C, Perez, R, Wilton, AS, Rohit Dass, A, Laporte, A and Henry, DA (2019) Burden of health behaviours and socioeconomic position on health care expenditure in Ontario. F1000Research 8, 303.CrossRefGoogle ScholarPubMed
Matsubayashi, K, Tabuchi, T and Iso, H (2021) Tobacco price increase and successful smoking cessation for two or more years in Japan. Nicotine & Tobacco Research 23, 716723.CrossRefGoogle ScholarPubMed
Mawditt, C, Sacker, A, Britton, A, Kelly, Y and Cable, N (2019) The stability of health-related behaviour clustering during mid-adulthood and the influence of social circumstances on health-related behaviour change. Preventive Medicine 121, 141148.CrossRefGoogle ScholarPubMed
Mawditt, C, Sasayama, K, Katanoda, K and Gilmour, S (2020) The clustering of health-related behaviours in the adult Japanese population. Journal of Epidemiology 31, 471479.CrossRefGoogle Scholar
McEniry, M, Samper-Ternent, R, Flórez, CE, Pardo, R and Cano-Gutierrez, C (2019) Patterns of SES health disparities among older adults in three upper middle- and two high-income countries. Journals of Gerontology: Series B 74, e25e37.CrossRefGoogle ScholarPubMed
Meader, N, King, K, Moe-Byrne, T, Wright, K, Graham, H, Petticrew, M, Power, C, White, M, Sowden, AJ. (2016) A systematic review on the clustering and co-occurrence of multiple risk behaviours. BMC Public Health 16, 657.CrossRefGoogle ScholarPubMed
Ministry of Health, Labour and Welfare (2020) As a Result of 2019 'National Health and Nutrition Survey’. Available at https://www.nibiohn.go.jp/eiken/kenkounippon21/en/eiyouchousa/.Google Scholar
Morris, LJ, D'Este, C, Sargent-Cox, K and Anstey, KJ (2016) Concurrent lifestyle risk factors: clusters and determinants in an Australian sample. Preventive Medicine 84, 15.CrossRefGoogle Scholar
Muthén, LK and Muthén, BO (2017) Mplus: Statistical Analysis with Latent Variables: User's Guide (Version 8). Los Angeles, CA: Muthén & Muthén. http://www.statmodel.com/download/usersguide/MplusUserGuideVer_8.pdf.Google Scholar
Nakamura, S, Inayama, T, Hata, K, Matsushita, M, Takahashi, M, Harada, K and Arao, T (2016) Association of household income and education with eating behaviors in Japanese adults: a cross-sectional study. BMC Public Health 16, 61.CrossRefGoogle ScholarPubMed
Nakamura, T, Nakamura, Y, Saitoh, S, Okamura, T, Yanagita, M, Yoshita, K, Nishi, N, Okuda, N, Kadota, A, Ohkubo, T, Ueshima, H, Okayama, A and Miura, K (2018) Relationship between socioeconomic status and the prevalence of underweight, overweight or obesity in a general Japanese population: NIPPON DATA2010. Journal of Epidemiology 28, S10S16.CrossRefGoogle ScholarPubMed
Noble, N, Paul, C, Turon, H and Oldmeadow, C (2015) Which modifiable health risk behaviours are related? A systematic review of the clustering of Smoking, Nutrition, Alcohol and Physical activity (‘SNAP’) health risk factors. Preventive Medicine 81, 1641.CrossRefGoogle ScholarPubMed
Noh, JW, Kim, J, Yang, Y, Park, J, Cheon, J and Kwon, YD (2017) Body mass index and self-rated health in East Asian countries: comparison among South Korea, China, Japan, and Taiwan. PLOS ONE 12, e0183881.CrossRefGoogle ScholarPubMed
Nora, W, Kyrre, B and Bente, W (2015) Growth trajectories of health behaviors from adolescence through young adulthood. International Journal of Environmental Research and Public Health 12, 1371113729.Google Scholar
Poortinga, W (2007) The prevalence and clustering of four major lifestyle risk factors in an English adult population. Preventive Medicine 44, 124128.CrossRefGoogle Scholar
Rabel, M, Laxy, M, Thorand, B, Peters, A, Schwettmann, L and Mess, F (2019) Clustering of health-related behavior patterns and demographics. Results from the population-based KORA S4/F4 cohort study. Frontiers in Public Health 6, 387.CrossRefGoogle ScholarPubMed
Schneider, S, Huy, C, Schuessler, M, Diehl, K and Schwarz, S. (2009) Optimising lifestyle interventions: identification of health behaviour patterns by cluster analysis in a German 50+ survey. European Journal of Public Health 19, 271277.CrossRefGoogle Scholar
Sjösten, N, Kivimäki, M, Singh-Manoux, A, Ferrie, JE, Goldberg, M, Zins, M, Pentti, J, Westerlund, H and Vahtera, J (2012) Change in physical activity and weight in relation to retirement: the French GAZEL Cohort Study. BMJ Open 2, e000522.CrossRefGoogle ScholarPubMed
Stelmach, W, Kaczmarczyk-Chałas, K, Bielecki, W and Drygas, W (2004) The impact of income, education and health on lifestyle in a large urban population of Poland (Cindi programme). International Journal of Occupational Medicine and Environmental Health 17, 393401.Google Scholar
Syse, A, Veenstra, M, Furunes, T, Mykletun, RJ and Solem, PE (2017) Changes in health and health behavior associated with retirement. Journal of Aging and Health 29, 99127.CrossRefGoogle ScholarPubMed
The Royal Australian College of General Practitioners (2004) Smoking, Nutrition, Alcohol, Physical Activity (SNAP). Australia: The Royal Australian College of General Practitioners.Google Scholar
The World Bank (2019) GDP Per Capita, PPP. Available at https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD?name_desc=false.Google Scholar
Tsushita, K, S, A Hosler, Miura, K, Ito, Y, Fukuda, T, Kitamura, A and Tatara, K. (2018) Rationale and descriptive analysis of specific health guidance: the nationwide lifestyle intervention program targeting metabolic syndrome in Japan. Journal of Atherosclerosis and Thrombosis 25, 308322.CrossRefGoogle ScholarPubMed
United Nations (2019) World Population Prospects 2019. Available at https://population.un.org/wpp/Download/Standard/Population/.Google Scholar
Wang, W, Wang, K and Li, T (2001) A study on the epidemiological characteristics of obesity in Chinese adults. Zhonghua Liu Xing Bing Xue Za Zhi 22, 129132.Google Scholar
World Health Organization, Regional Office for the Western Pacific (2000) The Asia-Pacific Perspective: Redefining Obesity and its Treatment. Sydney: Health Communications Australia. Available at https://apps.who.int/iris/handle/10665/206936.Google Scholar
Yan, Z, Xiang, N, Meng, J, Liang, H and Yue, Z (2022) Understanding the effect of retirement on health behaviors in China: causality, heterogeneity and time-varying effect. Frontiers in Public Health 10, 952072.CrossRefGoogle Scholar
Yuan, L, Juan, Z, Xiao-ming, S and Xiao-feng, L (2013) A cross-sectional survey on the efficacy of China healthy lifestyle for all in 2012. Chinese Journal of Endemiology 34, 5.Google Scholar
Zhao, Y, Hu, Y, Smith, JP, Strauss, J and Yang, G (2014) Cohort profile: the China Health and Retirement Longitudinal Study (CHARLS). International Journal of Epidemiology 43, 6168.CrossRefGoogle ScholarPubMed
Supplementary material: File

Wu et al. supplementary material

Wu et al. supplementary material

Download Wu et al. supplementary material(File)
File 14.8 KB