No CrossRef data available.
Published online by Cambridge University Press: 11 April 2025
The proportional–integral–derivative (PID) controller remains widely used in industrial applications today due to its simplicity and ease of implementation. However, tuning the controller’s gains is crucial for achieving desired performance. This study compares the performance of PID controllers within a cascade control architecture designed for both position and attitude control of a quadcopter. Particle swarm optimisation (PSO), grey wolf optimisation (GWO), artificial bee colony (ABC), and differential evaluation (DE) methods are employed to optimally tune the PID parameters. A set of PID gains is determined offline by minimising various modified multi-objective functions based on different fitness measures: IAE, ISE, ITAE and ITSE. These measures are adapted as fitness functions for position and attitude control. A simulation study is conducted to determine which fitness function yields the optimal PID gains, as evidenced by the lowest values of the objective functions. In these simulations, two different desired trajectories are designed, and the controllers are applied to ensure the quadcopter tracks these trajectories accurately. Additionally, to test the robustness of the flight control architecture and the finely tuned PID controllers against various environmental effects and parametric uncertainties, several case scenarios are also explored.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.