No CrossRef data available.
Published online by Cambridge University Press: 04 April 2025
Turbulent flow widely exists in the aerospace field, and it is still challenging to realise the accurate prediction in the numerical simulation. To realise the high-fidelity numerical simulation of compressible turbulent flow, a high-order accurate self-adaptive turbulence eddy simulation (SATES) method is developed on the PHengLEI-HyOrder open-source solver, combining with the high-order accurate weighted compact nonlinear schemes (WCNS). The compressible flow in the subsonic and transonic is numerically simulated, including some typical cases, such as subsonic flow past a circular cylinder and flow past a square cylinder, high-lift configuration DLR-F11, transonic flow around a circular cylinder. The results predicted by the current high-order accurate SATES are in good agreement with the available experimental and numerical data. The present numerical method can also accurately capture the interactions between shock waves and turbulence while accurately simulating flow separation, shear layer instability and large-scale vortex shedding. The results obtained show that the current high-order accurate SATES simulations based on PHengLEI-HyOrder solver can accurately simulate complex turbulent flows with high reliability.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.