Hostname: page-component-cb9f654ff-lqqdg Total loading time: 0 Render date: 2025-09-01T22:36:03.105Z Has data issue: false hasContentIssue false

Rapid determination of aerodynamicsensitivity derivatives for subsonicwings

Published online by Cambridge University Press:  04 July 2016

X. Mingchu
Affiliation:
Northwestern Polytechnical University, Xi'an, People's Republic of China
G. Wenying
Affiliation:
Northwestern Polytechnical University, Xi'an, People's Republic of China

Summary

A rapid quasi-analytical method — low orderperturbation panel method — is presented forcalculating aerodynamic sensitivity derivatives forsubsonic wings. The method is based on the low orderpanel method with the internal Dirichlet problemformulation and analytical differentiations cascadedand inverted. In terms of doublet strengthsensitivity to configuration geometry, the computingcost of the present method for the partialderivative matrix calculation is less than one orderof magnitude than the existing high orderperturbation panel method, but the accuracy iscomparable. Furthermore, by applying a physicalinterpolation instead of a weighted geometricalinterpolation, the sensitivity derivatives ofpressure, lift and pitching moment coefficient withrespect to configuration geometry are derived andcalculated in the present paper. Such sensitivityderivatives are lacking in high order perturbationpanel method. A few calculative examples aregiven.

Information

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1996 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Sobieszezanski-Sobieski, J. Sensitivity analysis and multidiscipli-nary optimisation for aircraft design: recent advances and results, J Aircr, December 1990, 27, (12), pp 9931001.Google Scholar
2. Baysal, O. and Eleshaky, E. Aerodynamic design optimisation using sensitivity analysis and computational fluid dynamics, AIAA J, March 1992, 30, (3), pp 718725.Google Scholar
3. Sobieszezanski-Sobieski, J. The case for aerodynamic sensitivity analysis; sensitivity analysis in engineering, NASA CP-2457, September 1986, pp 7796.Google Scholar
4. Bristow, D.R. and Hawk, J.D. Subsonic panel method for the efficient analysis of multiple geometry perturbations, NASA CR-3528, March 1982.Google Scholar
5. Bristow, D.R. and Hawk, J.D. Subsonic panel method for wing surfaces from pressure distributions, NASA CR-3713.Google Scholar
6. Hawk, J.D. and Bristow, D.R. Development of MCAERO wing design panel method with interactive graphics module, NASA CR- 3775, April 1984.Google Scholar
7. Maskew, B. Prediction of subsonic aerodynamic characteristics: a case for low order panel methods, J Aircr, February 1982, 19, (2).Google Scholar
8. Maskew, B., Vaidyanathan, T.S., Nathman, J.K. and Dvorak, F.A. Prediction of aerodynamic characteristics of fighter wings at high angle of attack, AD-A145107, March 1984.Google Scholar
9. Mingchu, X. A Simple and direct proof for the theorem on equivalent relation between dipole and vortex distribution, Mechanics and Practice, October 1992, 14, (5), pp 6364, in Chinese.Google Scholar
10. Mingchu, X. and Wenying, G. Aerodynamic sensitivities for subsonic lifting surface, Acta Aeronautica et Astronautica Sinica, January 1992, 13, (1), A91A95, in Chinese.Google Scholar