Hostname: page-component-68c7f8b79f-lvtpz Total loading time: 0 Render date: 2025-12-22T10:37:11.637Z Has data issue: false hasContentIssue false

Optimisation of transverse fuel injection from strut base corners for improved scramjet efficiency

Published online by Cambridge University Press:  22 December 2025

O. R. Kummitha*
Affiliation:
Associate Professor, Mechanical Engineering, B V Raju Institute of Technology , Narsapur, India
K. R. Kandula
Affiliation:
Project Associate-I, Mechanical Department, B V Raju Institute of Technology, Narsapur, India
*
Corresponding author: O. R. Kummitha; Email: obulareddy.bec10@gmail.com

Abstract

Strategies for optimising air-fuel interaction are critical in supersonic combustion. This research alters the fuel injector design by adjusting the strut corner base angle, allowing the fuel to contact the air transversely. This computational analysis uses the Reynolds-averaged Navier-Stokes (RANS) equations in conjunction with the Shear Stress Transport (SST) k-omega turbulence model and the eddy dissipation turbulence chemistry model. The validation has been conducted for the present simulation with the experimental data, comparing the pressure, temperature and Schlieren images. The standard DLR scramjet combustor model consists of a single strut (fuel injector) injecting parallel to the air stream, but in this research, the design of the strut base is changed to angles 30, 45 and 60 degrees to inject the fuel in a new method. This slanted strut base aids fuel injection into the airstream and permits the mixture to generate swirls behind the strut base, resulting in better mixing and 35% greater turbulence. This modification improves the reaction process’s spontaneity and generates 37% higher temperatures, increasing mixing and combustion efficiency by about 37% and 23%, respectively.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aso, S., Inoue, K., Yamaguchi, K. and Tani, Y. A study on supersonic mixing by a circular nozzle with various injection angles for an air-breathing engine, Acta Astronaut., 2009, 65, pp 687695.10.1016/j.actaastro.2009.01.051CrossRefGoogle Scholar
Banica, M.C., Scheuermann, T., Chun, J., Weigand, B. and Von Wolfersdorf, J. Numerical study of supersonic combustion processes with central strut injection, J. Propul. Power, 2010, 26, pp 869874.10.2514/1.43599CrossRefGoogle Scholar
Billig, F. and Schetz, J. Analysis of penetration and mixing of gas jets in supersonic cross flow, AlAA 4th International Aerospace Planes Conference, 1992, p 5061.10.2514/6.1992-5061CrossRefGoogle Scholar
Billig, F.S. Research on supersonic combustion, J. Propul. Power, 1993, 9, pp 499514.10.2514/3.23652CrossRefGoogle Scholar
Cai, Z., Zhu, X., Sun, M. and Wang, Z. Experimental study on the combustion process in a scramjet combustor with a rear-wall-expansion geometry, J. Aerosp. Eng., 2018, 31, p 04018077.10.1061/(ASCE)AS.1943-5525.0000911CrossRefGoogle Scholar
Chang, J., Zhang, J., Bao, W. and Yu, D. Research progress on strut-equipped supersonic combustors for scramjet application, Prog. Aerosp. Sci., 2018, 103, pp 130.10.1016/j.paerosci.2018.10.002CrossRefGoogle Scholar
Choubey, G., Devarajan, Y., Huang, W., Mehar, K., Tiwari, M. and Pandey, K.M. Recent advances in cavity-based scramjet engine-a brief review, Int. J. Hydrog. Energy, 2019, 44, pp 1389513909.10.1016/j.ijhydene.2019.04.003CrossRefGoogle Scholar
Choubey, G., Gaud, P., Fatah, A.M. and Devarajan, Y. Numerical investigation on geometric sensitivity and flame stabilization mechanism in H2 fueled two-strut based scramjet combustor, Fuel, 2022, 312, p.122847.10.1016/j.fuel.2021.122847CrossRefGoogle Scholar
Choubey, G., Solanki, M., Patel, O., Devarajan, Y. and Huang, W. Effect of different strut designs on the mixing performance of H2 fueled two-strut based scramjet combustor, Fuel, 2023, 351, p 128972.10.1016/j.fuel.2023.128972CrossRefGoogle Scholar
Choubey, G., Suneetha, L. and Pandey, K.M. Composite materials used in scramjet-a review, Materials Today: Proc., 2018, 5, pp 13211326.Google Scholar
Curran, E.T. Scramjet engines: The first forty years, J. Propul. Power, 2001, 17, pp 11381148.10.2514/2.5875CrossRefGoogle Scholar
Dharavath, M., Manna, P. and Chakraborty, D. Thermochemical exploration of hydrogen combustion in a generic scramjet combustor, Aerosp. Sci. Technol., 2013, 24, pp 264274.10.1016/j.ast.2011.11.014CrossRefGoogle Scholar
Dong, M.Z., Liao, J., Choubey, G. and Huang, W. Influence of the secondary flow control on the transverse gaseous injection flow field properties in a supersonic flow, Acta Astronaut., 2019, 165, pp 150157.10.1016/j.actaastro.2019.08.028CrossRefGoogle Scholar
Fuller, E.J., Mays, R.B., Thomas, R.H. and Schetz, J.A. Mixing studies of helium in air at high supersonic speeds, AIAA J., 1992, 30, pp 22342243.10.2514/3.11210CrossRefGoogle Scholar
Gamba, M. and Mungal, M.G. Ignition, flame structure and near-wall burning in transverse hydrogen jets in supersonic crossflow, J. Fluid Mech., 2015, 780, pp 226273.10.1017/jfm.2015.454CrossRefGoogle Scholar
Gruber, M.R., Nejad, A.S., Chen, T.H. and Dutton, J.C. Mixing and penetration studies of sonic jets in a Mach 2 freestream. J. Propul. Power, 1995, 11, pp 315323.10.2514/3.51427CrossRefGoogle Scholar
He, Y., Cao, R., Huang, H., Qin, J. and Yu, D. Overall performance assessment for scramjet with boundary-layer ejection control based on thermodynamics, Energy, 2017, 121, pp 318330.10.1016/j.energy.2016.12.123CrossRefGoogle Scholar
Huang, W., Du, Z.B., Yan, L. and Xia, Z.X. Supersonic mixing in airbreathing propulsion systems for hypersonic flights, Prog. Aerosp. Sci., 2019, 109, p 100545.10.1016/j.paerosci.2019.05.005CrossRefGoogle Scholar
Huang, W., Pourkashanian, M., Ma, L., Ingham, D.B., Luo, S.B. and Wang, Z.G. Effect of geometric parameters on the drag of the cavity flame holder based on the variance analysis method, Aerosp. Sci. Technol., 2012, 21, pp 2430.10.1016/j.ast.2011.04.009CrossRefGoogle Scholar
Huang, Z.W., He, G.Q., Wang, S., Qin, F., Wei, X.G. and Shi, L. Simulations of combustion oscillation and flame dynamics in a strut-based supersonic combustor, Int. J. Hydrogen Energ, 2017, 42, pp 82788287.10.1016/j.ijhydene.2016.12.142CrossRefGoogle Scholar
Kumar, S., Das, S. and Sheelam, S. Application of CFD and the Kriging method for optimizing the performance of a generic scramjet combustor, Acta Astronaut., 2014, 101, pp 111119.10.1016/j.actaastro.2014.04.003CrossRefGoogle Scholar
Kumaran, K. and Babu, V. Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen, Combust. Flame, 2009, 156, pp 826841.10.1016/j.combustflame.2009.01.008CrossRefGoogle Scholar
Kummitha, O.R. and Pandey, K.M. Hydrogen-fueled scramjet combustor with a wavy-wall double strut fuel injector, Fuel, 2021, 304, p 121425.10.1016/j.fuel.2021.121425CrossRefGoogle Scholar
Kummitha, O.R., Pandey, K.M. and Gupta, R. CFD analysis of a scramjet combustor with cavity-based flame holders, Acta Astronaut., 2018, 144, pp 244253.10.1016/j.actaastro.2018.01.005CrossRefGoogle Scholar
Li, L.Q., Huang, W., Fang, M., Shi, Y.L., Li, Z.H. and Peng, A.P. Investigation on three mixing enhancement strategies in transverse gaseous injection flow fields: A numerical study. Int. J. Heat Mass Transfer, 2019, 132, pp 484497.10.1016/j.ijheatmasstransfer.2018.12.038CrossRefGoogle Scholar
Li, L.Q., Huang, W., Yan, L., Du, Z.B. and Fang, M. Numerical investigation and optimization on the micro-ramp vortex generator within scramjet combustors with the transverse hydrogen jet. Aerosp. Sci. Technol., 2019, 84, pp 570584.10.1016/j.ast.2018.11.011CrossRefGoogle Scholar
Li, X., Huang, X., Liu, H. and Du, J. Fuel reactivity controlled self-starting and propulsion performance of a scramjet: A model investigation, Energy, 2020, 195, p 116920.10.1016/j.energy.2020.116920CrossRefGoogle Scholar
Li, Z., Manh, T.D., Gerdroodbary, M.B., Nam, N.D., Moradi, R. and Babazadeh, H. The effect of sinusoidal wall on hydrogen jet mixing rate considering supersonic flow, Energy, 2020, 193, p.116801.10.1016/j.energy.2019.116801CrossRefGoogle Scholar
Li, Z., Wang, J. and Li, X. Application of hydrogen mechanisms in combustion simulation of DLR scramjet combustor and their effect on combustion performance, Fuel, 2023, 349, p 128659.10.1016/j.fuel.2023.128659CrossRefGoogle Scholar
Lv, X., Yan, X., Lei, M., Hou, Y., Chen, L., Wang, Y., Qi, C., Yu, X. and Yu, J. Propagation of high-speed hydrogen-air combustion waves through inert gases, Fuel, 2023, 345, p 128205.10.1016/j.fuel.2023.128205CrossRefGoogle Scholar
Manna, P., Behera, R. and Chakraborty, D. Liquid-fueled strut-based scramjet combustor design: A computational fluid dynamics approach, J. Propul. Power, 2008, 24, pp 274281.10.2514/1.28333CrossRefGoogle Scholar
Mays, R., Thomas, R. and Schetz, J. Low-angle injection into a supersonic flow. 25th Joint Propulsion Conference, 1989, p 2461.10.2514/6.1989-2461CrossRefGoogle Scholar
Moradi, R., Mahyari, A., Gerdroodbary, M.B., Abdollahi, A. and Amini, Y. Shape effect of cavity flame holder on mixing zone of hydrogen jet at supersonic flow, Int. J. Hydrog. Energy, 2018, 43, pp 1636416372.10.1016/j.ijhydene.2018.06.166CrossRefGoogle Scholar
Nair, P.P., Ananthu, J.P. and Narayanan, V. Effect of jet splitting using passive strut on the performance and thermoacoustic characteristics of a scramjet combustor, Phys. Fluids, 2024, 36, p 086114.10.1063/5.0217214CrossRefGoogle Scholar
Oevermann, M. Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling, Aerosp. Sci. Technol., 2000, 4, pp 463480.10.1016/S1270-9638(00)01070-1CrossRefGoogle Scholar
Ono, M., Furuichi, N. and Tsuji, Y. Reynolds number dependence of turbulent kinetic energy and energy balance of 3-component turbulence intensity in a pipe flow, J. Fluid Mech., 2023, 975, p A9.10.1017/jfm.2023.842CrossRefGoogle Scholar
Pandey, K.M., Roga, S. and Choubey, G. Numerical investigation on hydrogen-fueled scramjet combustor with parallel strut fuel injector at a flight Mach number of 6, J. Appl. Fluid Mech., 2016, 9, pp 12151220.Google Scholar
Qin, Q., Agarwal, R. and Zhang, X. A novel method for flame stabilization in a strut-based scramjet combustor, Combust. Flame, 2019, 210, pp 292301.10.1016/j.combustflame.2019.08.038CrossRefGoogle Scholar
Quan, F., Chang, J., Kong, C., Lv, C. and Wu, G. Research on mixing characteristics of scramjet combustor equipped with strut injector, Appl. Therm. Eng., 2024, 236, p 121527.10.1016/j.applthermaleng.2023.121527CrossRefGoogle Scholar
Seleznev, R.K., Surzhikov, S.T. and Shang, J.S. A review of the scramjet experimental database. Prog. Aerosp. Sci., 2019, 106, pp 4370.10.1016/j.paerosci.2019.02.001CrossRefGoogle Scholar
Sharma, V., Eswaran, V. and Chakraborty, D. Determination of optimal spacing between transverse jets in a SCRAMJET engine, Aerosp. Sci. Technol., 2020a, 96, p 105520.10.1016/j.ast.2019.105520CrossRefGoogle Scholar
Sharma, V., Eswaran, V. and Chakraborty, D. Effect of location of a transverse sonic jet on shock augmented mixing in a SCRAMJET engine, Aerosp. Sci. Technol., 2020b, 96, p 105535.10.1016/j.ast.2019.105535CrossRefGoogle Scholar
Shen, W., Huang, Y., You, Y. and Yi, L. Characteristics of reaction zone in a dual-mode scramjet combustor during mode transitions, Aerosp. Sci. Technol., 2020, 99, p 105779.10.1016/j.ast.2020.105779CrossRefGoogle Scholar
Suneetha, L., Randive, P. and Pandey, K.M. Numerical investigation on the influence of diamond-shaped strut on the performance of a scramjet combustor, Int. J. Hydrog. Energy, 2019, 44, pp 69496964.10.1016/j.ijhydene.2019.01.187CrossRefGoogle Scholar
Waidmann, W., Alff, F., Böhm, M., Brummund, U., Clauss, W. and Oschwald, M.J.S.T. Supersonic combustion of hydrogen/air in a scramjet combustion chamber, Space Technol., 1995, 6, pp 421429.10.1016/0892-9270(95)00017-8CrossRefGoogle Scholar
Waidmann, W., Alff, F., Brummund, U., Böhm, M., Clauss, W. and Oschwald, M. Experimental investigation of the combustion process in a supersonic combustion ramjet (SCRAMJET). DGLR Jahrbuch, 1994, pp 629–638.Google Scholar
Waidmann, W., Brummund, U. and Nuding, R. Experimental investigation of supersonic ramjet combustion (scramjet). Elsevier, 1995.Google Scholar
Wang, X., Zhong, F., Gu, H. and Zhang, X. Numerical study of combustion and convective heat transfer of a Mach 2.5 supersonic combustor, Appl. Therm. Eng., 2015, 89, pp 883896.10.1016/j.applthermaleng.2015.06.071CrossRefGoogle Scholar
Winter, C.J. Hydrogen in high-speed air transportation, Int. J. Hydrog. Energy, 1990, 15, pp 579595.10.1016/0360-3199(80)90006-3CrossRefGoogle Scholar
Wu, K., Zhang, P., Yao, W. and Fan, X. Computational realization of multiple flame stabilization modes in DLR strut-injection hydrogen supersonic combustor, Proc. Combust. Inst., 2019, 37, pp 36853692.10.1016/j.proci.2018.07.097CrossRefGoogle Scholar
Yan, L., Liao, L., Meng, Y.S., Li, S.B. and Huang, W. Investigation on the mode transition of a typical three-dimensional scramjet combustor equipped with a strut, Energy, 2020, 208, p 118419.10.1016/j.energy.2020.118419CrossRefGoogle Scholar
Zhao, Y., Li, M. and Gong, C. Effect of mainstream-forced-entrainment control strategy on the combustion performance of a cavity-based combustor, Fuel, 2025, 380, p 133265.10.1016/j.fuel.2024.133265CrossRefGoogle Scholar
Atci, M., Suppandipillai, J., Sharma, P., Karaca, M. & Jayaraman, K. Influence of cavity and ramp layout on combustion performance in a strut-based scramjet combustor, J. Aerosp. Eng., 2024, 46, Article p 529.Google Scholar
Bezerra, Í.S.A., Araújo, P.P.B., Souza, S.I.S., Marinho, G.S. and Toro, P.G.P. Influence of the hydrogen transverse injection mode in a scramjet combustor performance, Int. J. Hydrog. Energy, 2024, 53, pp 12691284.10.1016/j.ijhydene.2023.11.308CrossRefGoogle Scholar
Bogi Sai, S.B., Vinay, D., Akula Sai, S., Sundaraswaran, M.S., Raj, Y., Sharma, N. and Sanal Kumar, V.R. Enhancing scramjet combustor efficiency through strut-based multi-point fuel injection: In silico analysis utilizing the SST k-ω model, AIAA SciTech Forum, paper 2025-0945, 2025.10.2514/6.2025-0945CrossRefGoogle Scholar
Chakravarthy, S., Randive, P. and Pati, S. Implication of injection angle and jet-to-cross flow ratio on the combustion characteristics of a scramjet combustor, Proc. Inst. Mech. Eng. G: J. Aerosp. Eng., 2024.10.1177/09544089241253689CrossRefGoogle Scholar
Costa Júnior, J.C.A., de Oliveira Júnior, P.C. and de Paula Toro, P.G. Investigation of flow and combustion characteristics in a hydrogen-fueled scramjet combustor, J. Braz. Soc. Mech. Sci. Eng., 2024, 46, Article p 529.Google Scholar
Kummitha, O.R. and Kandula, K.R. Effect of wedge strut fuel injection nozzles arrangement for a model scramjet engine. Int. J. Hydrog. Energy, 2024, 92, pp 506515.10.1016/j.ijhydene.2024.10.304CrossRefGoogle Scholar
Venkateswarlu, K. and Kota Reddy, S.V. The influence of strut injection methods on flame stabilization and combustion performance of scramjet engines: A review. Int. J. Aeronaut. Space Sci., 2025, 26, pp 23452370.10.1007/s42405-025-00940-8CrossRefGoogle Scholar
Choubey, G., Solanki, M., Patel, O., Devarajan, Y. and Huang, W. Effect of different strut design on the mixing performance of H2 fueled two-strut based scramjet combustor. Fuel, 2023, 351, p 128972.10.1016/j.fuel.2023.128972CrossRefGoogle Scholar
Xia, X., Sun, Z., Wang, Y., Hu, Y., Qiang, H., Zhu, Y. and Zhang, Y. Comprehensive numerical analysis of mixing characteristics in a scramjet combustor utilizing multi-pylon configurations, Aerospace, 2025, 12, p 173.10.3390/aerospace12030173CrossRefGoogle Scholar
Zeng, J., Wang, G., Huang, H., Fan, J. and Wang, H. Experimental investigation of solid rocket scramjet based on central strut, Aerospace, 2024, 11, p 410.10.3390/aerospace11050410CrossRefGoogle Scholar