Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T17:08:33.672Z Has data issue: false hasContentIssue false

Flow simulation of the flight manoeuvres of a large transport aircraft with load alleviation

Published online by Cambridge University Press:  28 October 2021

C. Breitenstein*
Affiliation:
Technische Universität Braunschweig, Institut für Strömungsmechanik, Braunschweig, Germany
R. Radespiel
Affiliation:
Technische Universität Braunschweig, Institut für Strömungsmechanik, Braunschweig, Germany

Abstract

A new method for predicting manoeuvre loads on a large transport aircraft with a swept-back wing and a load alleviation system based on control surface deflections is developed. For this purpose, three-dimensional Reynolds-averaged Navier–Stokes (RANS) simulations of the rigid wing–fuselage configuration are performed while the aerodynamics of the tailplane are estimated by means of handbook methods. For a closer analysis, different quasi-steady pitching manoeuvres are chosen based on the CS-25 regulations. One of these manoeuvres is also simulated with active load alleviation, leading to a reduction in the wing-root bending moment by more than 40%. Besides demonstrating the potential of the considered load alleviation system, it is shown which manoeuvres are especially critical in this context and which secondary effects come along with load alleviation.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been updated. A corresponding correction notice has been published, detailing the changes.

References

European Aviation Safety Agency. Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes CS-25 - Amendment 26. Certification Specifications, EASA, December 2020.Google Scholar
Bartha, M. and Madzsar, J. Schraubenflügelanordnung für Luftschraubenpaare, Deutsches Reichspatent Nr. 249702, 1912.Google Scholar
Moreno-Caracciolo, M. The Autogiro, NACA Technical Memorandums No. 218, July 1923.Google Scholar
McLean, D. Gust-alleviation control systems for aircraft, Proc. Inst. Electr. Eng., 1978, 125, (7), pp 675–685.CrossRefGoogle Scholar
Klug, L., Radespiel, R., Ullah, J., Seel, F., Lutz, T., Wild, J., Heinrich, R. and Streit, T. Actuator concepts for active gust alleviation on transport aircraft at transonic speeds, AIAA Scitech 2020 Forum, Orlando, January 2020.CrossRefGoogle Scholar
Asaro, S., Khalil, K. and Bauknecht, A. Unsteady characterization of fluidic flow control devices for gust load alleviation, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2021, 151, pp 153163.CrossRefGoogle Scholar
Hodges, G.E. and McKenzie, J.R. B-52 Control configured vehicles manoeuvre load control system analysis and flight test results, AIAA 13th Aerospace Sciences Meeting, Pasadena, January 1975.Google Scholar
Disney, T.E. C-5A active load alleviation system, J. Spacecr. Rockets, 1977, 14, (2), pp 8186.CrossRefGoogle Scholar
Ramsey, H.D. and Lewolt, J.G. Design manoeuvre loads for an airplane with an active control system, AIAA 20th Structures, Structural Dynamics, and Materials Conference, St. Louis, April 1979.CrossRefGoogle Scholar
Anderson, D.C., Berger, R.L. and Hess, J.R. Jr. Manoeuvre load control and relaxed static stability applied to a contemporary fighter aircraft, J. Aircr., 1973, 10, (2), pp 112120.CrossRefGoogle Scholar
White, R.J. Improving the airplane efficiency by use of wing manoeuvre load alleviation, J. Aircr., 1971, 8, (10), pp 769775.CrossRefGoogle Scholar
Klug, L., Naik, H., Ullah, J., Lutz, T., Wild, J., Heinrich, R. and Radespiel, R. Gust alleviation on a forward swept transport aircraft at transonic speeds, AIAA Scitech 2021 Forum, Virtual Event, January 2021.CrossRefGoogle Scholar
Wild, J. Definition of the LEISA Reference Configuration, DLR Institutsbericht 124-2005, unpublished, Braunschweig, May 2006.Google Scholar
Ullah, J., Lutz, T., Klug, L., Radespiel, R. and Wild, J. Active gust load alleviation by combined actuation of trailing edge and leading edge flap at transonic speeds, AIAA Scitech 2021 Forum, Virtual Event, January 2021.CrossRefGoogle Scholar
Pott-Pollenske, M., Wild, J. and Bertsch, L. Aerodynamic and acoustic design of silent leading edge devices, 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, June 2014.CrossRefGoogle Scholar
Heinze, W., Haupt, M. and Woidt, M. Referenzkonfiguration und Lastannahmen für das Projekt INTELWI, unpublished, Braunschweig, September 2020.Google Scholar
Wild, J. LEISA Konfiguration - Leitwerk, unpublished, Braunschweig, July 2020.Google Scholar
Schlichting, H. and Truckenbrodt, E. Aerodynamik des Flugzeuges: Zweiter Band: Aerodynamik des Tragflügels (Teil II), des Rumpfes, der Flügel-Rumpf-Anordnung und der Leitwerke, 3rd ed, Springer Berlin Heidelberg, 2001, Berlin/Heidelberg. ISBN: 978-3-642-63149-8.CrossRefGoogle Scholar
Göthert, B. Ebene und räumliche Strömung bei hohen Unterschallgeschwindigkeiten, Jahrbuch 1941 der Deutschen Luftfahrtforschung, 1941, pp 156158.Google Scholar
Schlichting, H. and Truckenbrodt, E. Aerodynamik des Flugzeuges: Erster Band: Grundlagen aus der Strömungstechnik, Aerodynamik des Tragflügels (Teil I), 3rd ed, Springer Berlin Heidelberg, 2001, Berlin/Heidelberg. ISBN: 978-3-642-63148-1.CrossRefGoogle Scholar
Schwamborn, D., Gerhold, T. and Heinrich, R. The DLR TAU-code: recent applications in research and industry, European Conference on Computational Fluid Dynamics 2006, Egmond aan Zee, September 2006.Google Scholar
Heinrich, R., Dwight, R., Widhalm, M. and Raichle, A. Algorithmic developments in TAU, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2005, 89, pp 93108.CrossRefGoogle Scholar
Allmaras, S.R., Johnson, F.T. and Spalart, P.R. Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model, 7th International Conference on Computational Fluid Dynamics, Big Island, July 2012.Google Scholar
Tinoco, E.N., Brodersen, O.P., Keye, S., Laflin, K.R., Feltrop, E., Vassberg, J.C., Mani, M., Rider, B., Wahls, R.A., Morrison, J.H., Hue, D., Gariepy, M., Roy, C.J., Mavriplis, D.J. and Murayama, M. Summary of data from the sixth AIAA CFD drag prediction workshop: CRM cases 2 to 5, 55th AIAA Aerospace Sciences Meeting, Grapevine, January 2017.CrossRefGoogle Scholar