Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T18:26:13.031Z Has data issue: false hasContentIssue false

Flight in nature I: Take-off in animal flyers

Published online by Cambridge University Press:  27 January 2016

H. Smith*
Affiliation:
School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this review paper, several take-off techniques of different species of animal flyers and gliders, both extinct and extant, are analysed. The methods they use vary according to animal group and size. Smaller animals, such as insects, rely on the use of transient aerodynamic techniques or the use of stored elastic energy. Medium-size flyers such as birds, bats, and other mammal gliders initiate flight by a jump which involves leg and wing movement coordination. The largest animals to fly, the extinct pterosaurs, are believed to have used a combination of aerodynamic and mechanic techniques in order to become airborne. The information presented here can be used as a resource for novel biomimetic unmanned aircraft design.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2015

References

1.McMasters, J.H.The biomechanics of flight: Many possible solutions looking for problems, Int J of Engineering Education, 2004, 20, (3), pp 398404.Google Scholar
2.Alexander, D.E.Nature’s flyers, Birds, insects, and the biomechanics of flight, Baltimore, MD, USA, ISBN 0801880599, Johns Hopkins University Press, 2002.Google Scholar
3.Kesel, A.B.Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils, J Exp Biol, 2000, 203, (20), pp 31253135.CrossRefGoogle ScholarPubMed
4.Vargas, A., Mittal, R. and Dong, H.A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight, Bioinspir Biomim, 2008, 3, (2), pp 113.CrossRefGoogle ScholarPubMed
5.Tamai, M., Zhijian, W., Rajagopalan, G., Hui, H. and Hu, H. Aerodynamic performance of a corrugated dragonfly airfoil compared with smooth airfoils at low reynolds numbers, Collection of Technical Papers – 45th AIAA Aerospace Sciences Meeting, 2007, pp 112.CrossRefGoogle Scholar
6.Abdulrahim, M. and Lind, R. Using avian morphology to enhance aircraft maneuverability, Collection of Technical Papers, 2006, Atmospheric Flight Mechanics Conference, 2006, pp 117.CrossRefGoogle Scholar
7.Grant, D.T., Abdulrahim, M. and Lind, R.Design and analysis of biomimetic joints for morphing of micro air vehicles, Bioinspir Biomim, 2010, 5, (4), pp 18.CrossRefGoogle ScholarPubMed
8.Trizila, P., Kang, C.K., Aono, H., Shyy, W. and Visbal, M.Low-reynolds-number aerodynamics of a flapping rigid flat plate, AIAA J, 2011, 49, (4), pp 806823.CrossRefGoogle Scholar
9.Altenbuchner, C. and Hubbard, J.E. Jr Experimentally validated flexible-multi-body structural dynamics model of a bioinspired ornithopter, 2012, pp 111.CrossRefGoogle Scholar
10.Ma, K.Y., Chirarattananon, P., Fuller, S.B. and Wood, R.J.Controlled flight of a biologically inspired, insect-scale robot, Science, 2013, 340, (6132), pp 603607.CrossRefGoogle ScholarPubMed
11.Cowling, I.D., Willcox, S., Patel, Y., Smith, P. and Roberts, M.Increasing the persistence of UAVs and MAVs through thermal soaring, Aeronaut J, 2009, 113, (1145), pp 479489.CrossRefGoogle Scholar
12.Lambrecht, B.G.A., Horchler, A.D. and Quinn, R.D. A small, insect-inspired robot that runs and jumps. Proceedings – IEEE International Conference on Robotics and Automation, 2005, pp 12401245.Google Scholar
13.Kovač, M., Fuchs, M., Guignard, A., Zufferey, J.C. and Floreano, D. A miniature 7g jumping robot. Proceedings – IEEE International Conference on Robotics and Automation, 2008, pp 373378.CrossRefGoogle Scholar
14.Kovač, M., Schlegel, M., Zufferey, J.C. and Floreano, D. A miniature jumping robot with self-recovery capabilities. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009. 2009, pp 583589.Google Scholar
15.Kovač, M., Schlegel, M., Zufferey, J.C. and Floreano, D.Steerable miniature jumping robot, Autonomous Robots, 2010, 28, (3), pp 295306.CrossRefGoogle Scholar
16.Kovač, M., Wassim-Hraiz, , Fauria, O., Zufferey, J.C. and Floreano, D. The EPFL jumpglider, A hybrid jumping and gliding robot with rigid or folding wings. 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011, 2011, pp 16.Google Scholar
17.Armour, R., Paskins, K., Bowyer, A., Vincent, J., Megill, W. and Bomphrey, R.Jumping robots, A biomimetic solution to locomotion across rough terrain, Bioinspiration and Biomimetics, 2008, 3, (3), pp S65S82.CrossRefGoogle Scholar
18.Dudley, R.The biomechanics of insect flight, form, function, evolution. Princeton, NJ, USA, ISBN 0691094918, Princeton University Press, 2000.CrossRefGoogle Scholar
19.Brackenbury, J.Insects in flight, London. ISBN 0713723017, Blandford, 1992.Google Scholar
20.Burrows, M.Jumping performance of froghopper insects, J Exp Biol, 2006, 209, (23), pp 46074621.CrossRefGoogle ScholarPubMed
21.Zumstein, N., Forman, O., Nongthomba, U., Sparrow, J.C. and Elliott, C.J.H.Distance and force production during jumping in wild-type and mutant drosophila melanogaster, J Exp Biol, 2004, 207, (20), pp 35153522.CrossRefGoogle ScholarPubMed
22.Card, G. and Dickinson, M.Performance trade-offs in the flight initiation of drosophila, J Exp Biol, 2008, 211, (3), pp 341353.CrossRefGoogle ScholarPubMed
23.Trimarchi, J.R. and Schneiderman, A.M.Initiation of flight in the unrestrained fly, drosophila melanogaster. J Zool (Lond). 1995, 235, (2), pp 211222.CrossRefGoogle Scholar
24.Fontaine, E.I., Zabala, F., Dickinson, M.H. and Burdick, J.W.Wing and body motion during flight initiation in drosophila revealed by automated visual tracking, J Exp Biol, 2009, 212, (9), pp 13071323.CrossRefGoogle ScholarPubMed
25.Chen, M.W., Zhang, Y.L. and Sun, M.Wing and body motion and aerodynamic and leg forces during take-off in droneflies, J R Soc Interface, 2013, 10, (89), pp 113.CrossRefGoogle ScholarPubMed
26.Ellington, C.P.Wing mechanics and take-off preparation of thrips (thysanoptera), J Exp Biol, 1980, 85, (1), pp 129136.CrossRefGoogle Scholar
27.Pond, C.M.Initiation of flight and pre-flight behaviour of anisopterous dragonflies aeshna spp, J Insect Physiol, 1973, 19, (11), pp 22252229.CrossRefGoogle Scholar
28.Nachtigall, W.Take-off and flight behaviour of the tiger-beetle species cicindela hybrida in a hot environment (coleoptera: Cicindelidae). Entomol Gen, 1996, 20, (4), pp 249262.Google Scholar
29.Fadamiro, HY.Flight and landing behaviour of prostephanus truncatus (horn) (coleoptera: Bostrichidae) in relation to wind speed, J Stored Prod Res, 1996, 32, (3), pp 233238.CrossRefGoogle Scholar
30.Burrows, M. and Morris, O.Jumping in a winged stick insect, J Exp Biol, 2002, 205, (16), pp 23992412.CrossRefGoogle Scholar
31.Brackenbury, J.H.Kinematics of take-off and climbing flight in butterflies, J Zool, 1991, 224, (2), pp 251270.CrossRefGoogle Scholar
32.Chatterjee, S. and Templin, R.J.Posture, locomotion, and paleoecology of pterosaurs. Special Paper of the Geological Society of America, 2004, 376, pp 164.Google Scholar
33.Wilkinson, M.T., Unwin, D.M. and Ellington, C.P.High lift function of the pteroid bone and forewing of pterosaurs, Proc R Soc B, 2006, 273, (1582), pp 119126.CrossRefGoogle ScholarPubMed
34.Bramwell, C.D. and Whitfield, R.D.Biomechanics of pteranodon, Phil Trans R Soc B, 1974, 267, (890), pp 503581.Google Scholar
35.Bennett, S.C.The arboreal leaping theory of the origin of pterosaur flight, Hist Biol, 1997, 12, (3-4), pp 265290.CrossRefGoogle Scholar
36.Habib, M.B.Comparative evidence for quadrupedal launch in pterosaurs. Zitteliana Reihe B, Abhandlungen der Bayerischen Staatssammlung fur Palaontologie und Geologie, 2008, 1, (28), pp 159166.Google Scholar
37.Tobalske, B.W., Altshulerm, D.L. and Powers, D.R.Take-off mechanics in hummingbirds (trochilidae), J Exp Biol, 2004, 207, (8), pp 13451352.CrossRefGoogle ScholarPubMed
38.Earls, K.D.Kinematics and mechanics of ground take-off in the starling sturnis vulgaris and the quail coturnix coturnix, J Exp Biol, 2000, 203, (4), pp 725739.CrossRefGoogle ScholarPubMed
39.Provini, P., Tobalske, B.W., Crandell, K.E. and Abourachid, A.Transition from leg to wing forces during take-off in birds, J Exp Biol, 2012, 215, (23), pp 41154124.Google Scholar
40.Heppner, F.H. and Anderson, J.G.T.Leg thrust important in flight take-off in the pigeon, J Exp Biol, 1985, 114, (1), pp 285288.CrossRefGoogle Scholar
41.Dial, K.P. and Biewener, A.A.Pectoralis muscle force and power output during different modes of flight in pigeons (columba livia), J Exp Biol, 1993, 176, (1), pp 3154.CrossRefGoogle Scholar
42.Berg, A.M., Biewener, A.A.Wing and body kinematics of takeoff and landing flight in the pigeon (columba livia), J Exp Biol, 2010, 213, (10), pp 16511658.CrossRefGoogle ScholarPubMed
43.Askew, G.N., Marsh, R.L. and Ellington, C.P.The mechanical power output of the flight muscles of blue-breasted quail (coturnix chinensis) during take-off, J Exp Biol, 2001, 204, (21), pp 36013619.CrossRefGoogle ScholarPubMed
44.Tobalske, B.W., Dial, K.P.Effects of body size on take-off flight performance in the phasianidae (AVES), J Exp Biol, 2000, 203, (21), pp 33193332.CrossRefGoogle ScholarPubMed
45.Henry, H.T., Ellerby, D.J. and Marsh, R.L.Performance of guinea fowl numida meleagris during jumping requires storage and release of elastic energy, J Exp Biol, 2005, 208, (17), pp 32933302.CrossRefGoogle ScholarPubMed
46.McGahan, J.Flapping flight of the andean condor in nature, J Exp Biol, 1973, 58, (1), pp 239253.CrossRefGoogle ScholarPubMed
47.Norberg, R.A. and Norberg, U.M.Take-off, landing, and flight speed during fishing flights of gavia stellata (pont), Ornis Scandinavica, 1971, 2, (1), pp 5567.CrossRefGoogle Scholar
48.Norberg, U.M. and Rayner, J.M.V.Ecological morphology and flight in bats (mammalia, chiroptera), Wing adaptations, flight performance, foraging strategy and echolocation. Phil Trans R Soc B. 1987, 316, (1179), pp 335427.Google Scholar
49.Gardiner, J.D. and Nudds, R.L.No apparent ecological trend to the flight-initiating jump performance of five bat species, J Exp Biol, 2011, 214, (13), pp 21822188.CrossRefGoogle Scholar
50.Schutt, W.A. Jr, Scott Altenbach, J. and Chang, Y.H.et alThe dynamics of flight-initiating jumps in the common vampire bat desmodus rotundus, J Exp Biol, 1997, 200, (23), pp 30033012.CrossRefGoogle ScholarPubMed
51.Siemers, B.M. and Ivanova, T.Ground gleaning in horseshoe bats, Comparative evidence from rhinolophus blasii, R. euryale and R. mehelyi. Behav Ecol Sociobiol, 2004, 56, (5), pp 464471.CrossRefGoogle Scholar
52.Altenbach, J.S.Locomotor morphology of the vampire bat desmodus rotundus. Pittsburgh, PA, USA. ISBN 0943612055, American Society of Mammalogists, 1979.CrossRefGoogle Scholar
53.Essner, R.L. JrThree-dimensional launch kinematics in leaping, parachuting and gliding squirrels, J Exp Biol, 2002, 205, (16), pp 24692477.CrossRefGoogle ScholarPubMed
54.Paskins, K.E., Bowyer, A., Megill, W.M. and Scheibe, J.S.Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels glaucomys sabrinus, J Exp Biol, 2007, 210, (8), pp 14131423.CrossRefGoogle ScholarPubMed
55.Demes, B., Franz, T.M. and Carlson, K.J.External forces on the limbs of jumping lemurs at take-off and landing, Am J Phys Anthropol, 2005, 128, (2), 348358.CrossRefGoogle Scholar
56.Socha, J.J.Becoming airborne without legs: The kinematics of take-off in a flying snake, chrysopelea paradisi, J Exp Biol, 2006, 209, (17), pp 33583369.CrossRefGoogle Scholar
57.Davenport, J.How and why do flying fish fly? Rev Fish Biol Fish. 1994, 4, (2), pp 184214.CrossRefGoogle Scholar
58.Muramatsu, K., Yamamoto, J., Abe, T., Sekiguchi, K., Hoshi, N. and Sakurai, Y.Oceanic squid do fly, Mar Biol, 2013, 160, (5), pp 11711175.CrossRefGoogle Scholar
59.von Gleich, A., Pade, C., Petschow, U. and Pissarskoi, E.Potentials and trends in biomimetics. Berlin. ISBN 3642052452, Springer, 2010,202. http://dx.doi.org/10.1007/978-3-642-05246-0.CrossRefGoogle Scholar
60.Woodward, M.A. and Sitti, M. Design of a miniature integrated multi-modal jumping and gliding robot. IEEE International Conference on Intelligent Robots and Systems, 2011, pp 556561.CrossRefGoogle Scholar
61.Lussier Desbiens, A., Asbeck, A.T. and Cutkosky, M.R.Landing, perching and taking off from vertical surfaces, Int J Robotics Res, 2011, 30, (3), pp 355370.CrossRefGoogle Scholar
62.Siddall, R. and Kovac, M.Launching the AquaMAV: Bioinspired design for aerial-aquatic robotic platforms, Bioinspir Biomim, 2014; 9, (3), pp 115.CrossRefGoogle ScholarPubMed