Hostname: page-component-cb9f654ff-9knnw Total loading time: 0 Render date: 2025-08-27T07:35:55.107Z Has data issue: false hasContentIssue false

Equivalent dynamic beam–rod models ofaircraft wing structures

Published online by Cambridge University Press:  04 July 2016

U. Lee*
Affiliation:
Department of Mechanical Engineering Inha University, Incheon, South Korea

Abstract

The equivalent continuum beam-rod model of an aircraftwing structure with composite laminated skins hasbeen developed based on the concept of energyequivalence. The equivalent structural properties ofthe continuum beam-rod model are obtained bydirectly comparing the reduced stiffness and massmatrices for a typical segment of aircraft wing withthose for a finite element of continuum beam-rodmodel. The finite element stiffness and massmatrices are condensed through the well known finiteelement formulation procedure to be used incalculating the reduced stiffness and mass matricesfor the aircraft wing segment in terms of thecontinuum degrees of freedom introduced in thispaper. The present method of continuum modelling mayyield every equivalent structural property includingall possible couplings between bending, torsionaland transverse shear deformations. To evaluate theequivalent continuum beam-rod model developedherein, the free vibration and aeroelastic analysesfor a box-beam type aircraft wing structure havebeen conducted by using the continuum beam-rodmodel, and the numerical results are compared withthe results by using other different models of theaircraft wing structure.

Information

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1995 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Noor, A.K., Anderson, M.S. and Green, W.H. Continuum models for beam and plate-like lattice structures, AIAA J, 1978, 16, (12), pp 12191228.Google Scholar
2. Nayfeh, A.H. and Hefzy, M.S. Continuum modelling of the mechanical and thermal behaviour of discrete large structure, AIAA J, 1981, 19, (4), pp 766773.Google Scholar
3. Sun, C.T., Kim, B.J. and Bogdanoff, T.L. On the derivation of equivalent simple models for beam and plate-like structures in dynamic analysis, AIAA Paper 81-0624, 1981, pp 523532.Google Scholar
4. Lee, U. Dynamic continuum modelling of beamlike space structures using finite element matrices, AIAA J, 1990, 28, (4), pp 725731.Google Scholar
5. Lee, U. Dynamic continuum plate representations of large thin lattice structures, AIAA J, 1993, 31, (9), pp 17341736.Google Scholar
6. Giles, G.L. Equivalent plate analysis of aircraft wing box structure with general planform geometry, J Aircr, 1986, 23, (11), pp 859864.Google Scholar
7. Giles, G.L. Further generalisation of an equivalent plate representation for aircraft structural analysis, J Aircr, 1989, 26, (1), pp 6774.Google Scholar
8. Kapania, R.K. and Castel, F. A simple element for aeroelastic analysis of undamped and damped wings, AIAA J, 1990, 28, (2), pp 329337.Google Scholar
9. Hodges, D.H. Review of composite rotor blade modelling, AIAA J, 1990, 28, (3), pp 561565.Google Scholar
10. Bauchau, O.A., and Hong, C.H. Finite element approach to rotor blade modelling, J ofAmer Heli Soc 1987, 31, (1), pp 6067.Google Scholar
11. Bauchau, O.A. and Hong, C.H. Large displacement analysis of naturally curved and twisted composite beams, AIAA J, 1987, 25, (11), pp 14691475.Google Scholar
12. Bauchau, O.A. and Hong, C.H., Nonlinear composite beam theory, ASME J of App Mech, 1988, 55, pp 156163.Google Scholar
13. Stemple, A.D. and Lee, S.W. Finite-element model for composite beams with arbitrary cross-sectional warping, AIAA J, 1988, 26, (12), pp 15121520.Google Scholar
14. Mansfield, W.H. and Sobey, A.J. The fibre composite helicopter blade, Part 1: Stiffness properties, Part 2: Prospects for aeroelastic tailoring, Aeronaut Q, 1979, pp 413449.Google Scholar
15. Rehfield, L.W. Design analysis methodology for composite rotor blade, AFWAL-TR-85-3094, 1985, pp (v(a)-l-v(a)-15).Google Scholar
16. Rehfield, L.W., Atilgan, A.R. and Hodges, D.H. Nonclassical behaviour of thin-walled composite beams with closed cross sections, J Amer Heli Soc, April 1990, 35, (2), pp 4250.Google Scholar
17. Libove, C. Stresses and rate of twist in single-cell thin-walled beams with anisotropic walls, AIAA J, 1988, 26, (9), pp 11071118.Google Scholar
18. Bauchau, O.A. A beam theory for anosotropic materials, ASME J of App Mech, 1985, 52, pp 416422.Google Scholar
19. Bauchau, O.A. and Hong, C.H. Finite element approach to rotor blade modelling, J ofAmer Heli Soc, 1987, 32, (1), pp 6067.Google Scholar
20. Kosmatka, J.B. and Friedmann, P.P. Structural dynamic modelling of advanced composite propellers by the finite element method, 28th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Monterey, California, 1987.Google Scholar
21. Sivaneri, N.T. and Chopra, I. Dynamic stability of a rotor blade using finite element analysis, AIAA J, 1982, 20, (5), pp 716728.Google Scholar
22. Sivaneri, N.T. and Chopra, I. Finite element analysis for bearingless rotor blade aeroelasticity, J of Amer Heli Soc, 1984, 29, (2), pp 4251.Google Scholar
23. Hong, C.H. and Chopra, I. Aeroelastic stability analysis of a composite rotor blade, J Amer Heli Soc, 1985, 30, (2), pp 5767.Google Scholar
24. Hong, C.H. and Chopra, I. Aeroelastic stability analysis of a composite bearingless rotor blade, J of Amer Heli Soc, 1986, 31, (4), pp 2935.Google Scholar
25. Chandra, R., Stemple, A.D. and Chopra, I. Thin-walled composite beams under bending, torsional and extensional loads, J Aircr, 1990, 27, (7), pp 619626.Google Scholar
26. Song, O. and Librescu, L. Dynamic response to time-dependent excitation of cantilevered aircraft wing structures modelled as thin- walled beams, A1AA/SDM Conference, Paper AIAA-92-2213-CP, 1991.Google Scholar
27. Smith, E.C. and Chopra, I. Formulation and evaluation of an analytical model for composite box-beams, J of Amer Heli Soc, 1991, 36, (3), pp 2335.Google Scholar
28. Bisplinghoff, R.L. and Asbley, H. Principles of Aeroelasticity, Dover Pub, New York, 1975.Google Scholar
29. Langhaar, H.L. Energy Methods in Applied Mechanics, 1962, John Wiley & Sons, New York.Google Scholar
30. JrYates, E.C. Calculation of flutter characteristics for finite-span swept or unswept wings at subsonic and supersonic speeds by a modified strip analysis, NACA RM L57L10, 1958.Google Scholar
31. Bergen, P.D. Shape Sensitivity Analysis of Wing Dynamic Aeroelastic Response, MS Thesis, Virginia Polytechnic Institute and Stab University, July 1988.Google Scholar