No CrossRef data available.
Published online by Cambridge University Press: 08 January 2025
Friction stir welding (FSW) is a method of solid-state welding used to connect difficult-to-weld materials, such as aluminium alloy and magnesium alloy that cannot be joined using conventional welding techniques. This paper investigates the impact of FSW parameters on the corrosion characteristics of friction stir-welded AA2014-T6 aluminium alloy. Experiments were conducted in accordance with the Taguchi L9 orthogonal array by varying tool rotation speed, weld speed, and axial force across three levels. The FSW joints of the aluminium alloy AA2014-T6 were subjected to corrosion test using the electro-chemical workstation CHI660C. The Tafel plots and the corrosion rates were obtained from the corrosion tests. It was observed from the analysis of variance (ANOVA) results of the corrosion rates, that the tool rotation speed is the most persuading factor in controlling the corrosion rate. The scanning electron microscope (SEM) images of the corroded samples were analysed for the presence of pitting spots and its density.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.