Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T22:41:16.847Z Has data issue: false hasContentIssue false

DLR transonic inverse design code, extensions and modifications to increase versatility and robustness

Published online by Cambridge University Press:  11 October 2017

T. Streit*
Affiliation:
DLR, Institute of Aerodynamics and Flow Technology, Braunschweig, Germany
C. Hoffrogge
Affiliation:
DLR, Institute of Aerodynamics and Flow Technology, Braunschweig, Germany

Abstract

The DLR inverse design code computes the wing geometry for a prescribed target pressure distribution. It is based on the numerical solution of the integral inverse transonic small perturbation (TSP) equations. In this work, several extensions and modifications of the inverse design code are described. Results are validated with corresponding redesign test cases. The first modification concerns applications for high transonic Mach numbers or cases with strong shocks. The introduced modifications enable converged design solutions for cases where the original method failed. The second modification is the extension of the code to general non-planar wings. Previously, the design code was restricted to non-planar wing designs with small dihedral or to nacelle design. A third modification concerns aerofoil/wings designed for wind-tunnel design. In order to design a swept wing between two wind-tunnel walls, the solution method was extended to two symmetry planes. The introduced extensions and modifications have increased the robustness and range of applicability of the inverse design code.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Streit, T., Wedler, S. and Kruse, M. DLR natural and hybrid transonic laminar wing design incorporating new methodologies, Aeronautical J, 2015, 119, (1221), pp 1303-1326.CrossRefGoogle Scholar
2. Gerhold, T. Overview of hybrid RANS code TAU, in Kroll, N. and Fassbender, J. (Eds), MEGAFLOW – Numerical Flow Simulation for Aircraft Design, vol. 89 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2005, Springer-Verlag Berlin Heidelberg, pp 81-92.CrossRefGoogle Scholar
3. Kroll, N. and Fassbender, J.K. MEGAFLOW –Numerical Flow Simulation for Aircraft Design, Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) vol. 89, Springer Verlag, Closing Presentation DLR Project MEGAFLOW Braunschweig (de), 10–11 January 2002.Google Scholar
4. Takanashi, S. Iterative three-dimensional transonic wing design using integral equations, J Aircraft, 1985, 22, (8), pp 655-660.CrossRefGoogle Scholar
5. Bartelheimer, W. Ein Entwurfsverfahren für Tragflügel in Transsonischer Strömung, PhD Thesis, Technical Report, DLR Forschungsbericht FB-96-30, 1996.Google Scholar
6. Barthelheimer, W. An inverse method for the design of transonic airfoils and wings, Inverse Problems in Engineering, 1996, 4, (1), pp 21-51.CrossRefGoogle Scholar
7. Brezillon, J. and Abu-Zurayk, M. Aerodynamic inverse design framework using discrete adjoint method, New Results in Numerical and Experimental Fluid Mechanics VIII Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 121, 2013, Springer-Verlag Berlin Heidelberg, pp 489-496.Google Scholar
8. Hepperle, M., Bartelheimer, W. and Bousquet, O. Application of an inverse design method to the design of transonic nacelles, Aspects of Engine-Airframe Integration for Transport Aircraft. Aspects of Engine-Airframe Integration for Transport Aircraft, 6–7 March 1996, Braunschweig, Germany.Google Scholar
9. Wilhelm, R. Ein inverses Verfahren zum Aerodynamischen Entwurf von Triebwerksgondeln, PhD Thesis, Technical Report, DLR Forschungsbericht FB-2004-30, 2004.Google Scholar
10. Matsushima, K. and Takanashi, S. An inverse design method for wings using integral equations and its recent progress, Notes on Numerical Fluid Mechanics (NNFM), Vieweg+Teubner Verlag, 1999, vol. 65, pp 179-209.Google Scholar
11. Zhang, Z.Y. and Yang, Q.Z. Aerodynamic design of combined two lifting surfaces by CFD method for transonic flow, Lai, Y.C. (Ed), Presented at the 7th International Symposium on Computational Fluid Dynamics (7th ISCFD), September 1997, Beijing, China.Google Scholar
12. Matsushima, K, Iwamiya, T. and Nakahashi, K. Wing design for supersonic transports using integral equation method, Engineering Analysis with Boundary Elements, March 2004, 28, (3), pp 247-255.CrossRefGoogle Scholar
13. Yang, Q., Streit, T. and Wichmann, G. Aerodynamic design study for multi-lifting surfaces, Conference Proccedings, CEAS/KATnet Conference on Key Aerodynamic Technologies, 20–22 June 2005, Bremen, Germany.Google Scholar
14. Campbell, R.L. Efficient viscous design of realistic aircraft configurations, 29th AIAA, Fluid Dynamics Conference, 15–18 June 1998, AIAA Paper 98–2539, Albuquerque, NM, US.CrossRefGoogle Scholar
15. Mengmeng, Z., Rizzi, A. and Nangia, R. Transonic airfoiland wing design using inverse and direct methods, 53rd AIAA Aerospace Sciences Meeting, 2015, Kissimmee, Florida, US.Google Scholar
16. Rashad, R. and Zingg, D. Optimization of subsonic and transonic airfoils for natural laminar flow using a discrete-adjoint method, 62th CASI Aeronautics Conference and AGM 3rd GARDN Conference, 19–21 May 2015, Montreal, Canada.CrossRefGoogle Scholar
17. Campbell, R. L. An approach to constrained aerodynamic design with application to airfoils, Technical Report, NASA TP 3260, 1992, Washington, DC, US.Google Scholar
18. Obayashi, S. and Takanashi, S. Genetic optimization of target pressure distributions for inverse design methods, AIAA J, 1996, 34, (5), pp 881-886.CrossRefGoogle Scholar
19. Campbell, R. L., Campbell, M. L. and Streit, T. Progress toward efficient laminar flow analysis and design, AIAA Paper 2011–3527, 29th AIAA Applied Aerodynamics Conference, 27–30 June 2011, Honolulu, Hawaii, US.CrossRefGoogle Scholar
20. Ilic, C., Führer, T., Banavara, N., Abu-Zurayk, M., Einarsson, G., Kruse, M., Himisch, J., Seider, D. and Becker, R. Towards cooperative high-fidelity aircraft MDO: Comparison of Breguet and ODE evaluation of the cruise mission segment, STAB Symposium 2014, 4–5 November 2014, München, Germany.Google Scholar
21. Führer, T., Görtz, S., Abu-Zurayk, M., Ilic, C., Keye, S., Banavara, N., Kruse, M., Brodersen, O., Liepelt, R., Becker, R., Bach, T., Jepsen, J., Ciampa, P.D., Kohlgrüber, D., Scherer, J., Kier, T., Leitner, M. and Siggel, M. Entwicklung einer Softwareplattform für die Multidisziplinäre Optimierung eines Gesamtflugzeugs, 63. Deutscher Luft- und Raumfahrtkongress 2014, 16–18 September 2014, Augsburg, Deutschland.Google Scholar
22. Abu-Zurayk, M. and Brezillon, J. Aero-elastic multipoint optimization using the coupled adjoint approach, In New Results in Numerical and Experimental Fluid Mechanics IX Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 124, 2014, Springer, Cham, Switzerland, pp 45-52.CrossRefGoogle Scholar
23. Li, C., Görtz, S. and Brezillon, J. Efficient global optimization of a natural laminar airfoil based on surrogate modelling, In New Results in Numerical and Experimental Fluid Mechanics IX Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 124, 2014, Springer, Cham, Switzerland, pp 53-63.CrossRefGoogle Scholar
24. Maruyama, D., Liu, D. and Görtz, S. An efficient aerodynamic shape optimization framework for robuts design of airfoils using surrogate models, Proceedings ECCOMAS Congress 2016, June 5–10 June 2016, Crete Island, Crete.CrossRefGoogle Scholar
25. Hua, J. and Zhang, Z.Y. Transonic wing design for transport aircraft, ICAS Proceedings 9-14 September 1990, Stockholm, Sweden, pp 1316–1322.Google Scholar
26. Wichmann, G., Strohmeyer, D. and Streit, T. Three-surface aircraft - a concept for future large aircraft, ICAS 2000 22nd International Congress of Aeronautical Sciences, 27 August–1 September 2000, Harrogate, UK.CrossRefGoogle Scholar
27. Streit, T. and Hoffrogge, C. Erweiterung des 3D inversen Entwurfsverfahrens auf Randbedingungen mit 2 Symmetrieebenen. Technical Report DLR-IB-AS-BS-2016-95, 2016.Google Scholar
28. Hoffrogge, C. Allgemeine Vorgehensweise beim Entwurf eines laminaren Profils für gepfeilte Flügel, Bachelor Thesis, 2016, University Stuttgart, Stuttgart, Germany.Google Scholar