Hostname: page-component-7857688df4-lffn4 Total loading time: 0 Render date: 2025-11-15T00:35:35.676Z Has data issue: false hasContentIssue false

The design of predefined-time anti-saturation attitude control with disturbance observer for hypersonic morphing vehicles

Published online by Cambridge University Press:  14 November 2025

H. Cheng*
Affiliation:
School of Aeronautic Science and Engineering, Beihang University , Beijing, China
W. Wei
Affiliation:
School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
Q. Zhang
Affiliation:
School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
L. Cui
Affiliation:
School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
*
Corresponding author: H. Cheng; Email: haocheng202502@163.com

Abstract

This paper addresses the attitude control challenge of hypersonic morphing vehicles (HMVs) with uncertainties and actuator saturation. The primary contribution of this work lies in achieving a predefined settling time while ensuring robust control performance under morphing effects, actuator saturation and disturbances. Firstly, a control-oriented model is established based on the dynamics of HMVs. Subsequently, a nonsingular multivariable sliding mode manifold, utilising a switching function, is designed to attain predefined-time convergence and prevent singularity issues. A disturbance observer with an adaptive law is developed to precisely and swiftly estimate uncertainties and error states, while a predefined-time anti-saturation compensator is implemented to alleviate actuator saturation. Furthermore, closed-loop stability is guaranteed through rigorous Lyapunov synthesis. Extensive numerical simulations confirm the algorithm’s superiority in terms of control effectiveness.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ajaj, R.M., Beaverstock, C.S. and Friswell, M.I. Morphing aircraft: The need for a new design philosophy, Aerosp. Sci. Technol., 2016, 49, pp 154166.10.1016/j.ast.2015.11.039CrossRefGoogle Scholar
Qiao, H., Meng, H., Wang, M., Ke, W. and Sun, J. Adaptive control for hypersonic vehicle with input saturation and state constraints, Aerosp. Sci. Technol., 2019, 84, pp 107119.10.1016/j.ast.2018.10.018CrossRefGoogle Scholar
Chu, L., Li, Q., Gu, F., Du, X., He, Y. and Deng, Y. Design, modeling, and control of morphing aircraft: A review, Chin. J. Aeronaut., 2022, 35, (5), pp 220246.10.1016/j.cja.2021.09.013CrossRefGoogle Scholar
Parancheerivilakkathil, M.S., Pilakkadan, J.S., Ajaj, R.M., Amoozgar, M., Asadi, D., Zweiri, Y. and Friswell, M.I. A review of control strategies used for morphing aircraft applications, Chin. J. Aeronaut., 2024, 37, (4), pp 436463.10.1016/j.cja.2023.12.035CrossRefGoogle Scholar
Shao, P., Zhou, Z., Ma, S. and Bin, L. Structural robust gain-scheduled PID control and application on a morphing wing UAV, in 2017 36th Chinese Control Conference (CCC), Dalian, China, IEEE, 2017, pp 32363241.10.23919/ChiCC.2017.8027856CrossRefGoogle Scholar
Wen, N., Liu, Z., Sun, Y. and Zhu, L. Design of LPV-based sliding mode controller with finite time convergence for a morphing aircraft, Int. J. Aerosp. Eng., 2017, 2017, (1), p 8426348.10.1155/2017/8426348CrossRefGoogle Scholar
Bai, B. and Dong, C. Modeling and LQR switch control of morphing aircraft, in 2013 6th International Symposium on Computational Intelligence and Design, Hangzhou, China, IEEE, 2013, pp 148151.10.1109/ISCID.2013.44CrossRefGoogle Scholar
Gong, L., Wang, Q., Dong, C. and Zhong, K. Prescribed performance control of morphing aircraft based on switched nonlinear systems and reinforcement learning, Meas. Control, 2019, 52, (5-6), pp 608624.10.1177/0020294019830434CrossRefGoogle Scholar
Huang, S., Jiang, J. and Li, O. Adaptive neural network-based sliding mode backstepping control for near-space morphing vehicle, Aerospace, 2023, 10, (10), p 891.10.3390/aerospace10100891CrossRefGoogle Scholar
Zhang, H., Wang, P., Tang, G. and Bao, W. Fuzzy disturbance observer-based dynamic sliding mode control for hypersonic morphing vehicles, Aerosp. Sci. Technol., 2023, 142, p 108633. 10.1016/j.ast.2023.108633CrossRefGoogle Scholar
Yan, B., Dai, P., Liu, R., Xing, M. and Liu, S. Adaptive super-twisting sliding mode control of variable sweep morphing aircraft, Aerosp. Sci. Technol., 2019, 92, pp 198210.10.1016/j.ast.2019.05.063CrossRefGoogle Scholar
Liu, H., Zhang, Q., Cui, L., Han, X. and Yu, Y. Attitude control of hypersonic morphing aircraft based on incremental backstepping sliding mode, in 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, IEEE, 2022, pp 13241331.10.1109/ICSP54964.2022.9778601CrossRefGoogle Scholar
Zhang, Y., Huang, W. and Nie, Y. Finite-time control for the hypersonic morphing flight vehicle with FTESO, in 2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC), Beijing, China, Chinese Association of Automation, 2022, pp 4248.10.1109/YAC57282.2022.10023597CrossRefGoogle Scholar
Yao, Q., Jahanshahi, H., Moroz, I., Bekiros, S. and Alassafi, M.O. Indirect neural-based finite-time integral sliding mode control for trajectory tracking guidance of Mars entry vehicle, Adv. Space Res., 2023, 71, (9), pp 37233733.10.1016/j.asr.2022.11.059CrossRefGoogle Scholar
Yu, X., Li, P. and Zhang, Y. The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles, IEEE Trans. Ind. Electron., 2018, 65, (5), pp 41354144.10.1109/TIE.2017.2772192CrossRefGoogle Scholar
Zhang, H., Wang, P., Tang, G. and Bao, W. Fixed-time sliding mode control for hypersonic morphing vehicles via event-triggering mechanism, Aerosp. Sci. Technol., 2023, 140, p 108458. 10.1016/j.ast.2023.108458CrossRefGoogle Scholar
Zhang, L., Wei, C., Wu, R. and Cui, N. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle, Aerosp. Sci. Technol., 2018, 82-83, pp 7079.10.1016/j.ast.2018.08.028CrossRefGoogle Scholar
Zhang, Y., Pu, J., Zhang, L., Cui, N. and Wang, X. A novel nonsingular fixed-time sliding mode control for morphing aircraft with actuator faults and saturation, J. Franklin Inst., 2024, 361, (13), p 107062. 10.1016/j.jfranklin.2024.107062CrossRefGoogle Scholar
Ju, X., Wei, C., Xu, H. and Wang, F. Fractional-order sliding mode control with a predefined-time observer for VTVL reusable launch vehicles under actuator faults and saturation constraints, ISA Trans., 2022, 129, pp 5572.10.1016/j.isatra.2022.02.003CrossRefGoogle ScholarPubMed
Jiménez-Rodríguez, E., Muñoz-Vázquez, A.J., Sánchez-Torres, J.D., Defoort, M. and Loukianov, A.G. A Lyapunov-like characterization of predefined-time stability, IEEE Trans. Autom. Control., 2020, 65, (11), pp 49224927.10.1109/TAC.2020.2967555CrossRefGoogle Scholar
Lu, X., Wang, J., Wang, Y. and Chen, J. Neural network observer-based predefined-time attitude control for morphing hypersonic vehicles, Aerosp. Sci. Technol., 2024, 152, p 109333. 10.1016/j.ast.2024.109333CrossRefGoogle Scholar
Sun, Y., et al. Neural network-based tracking control of uncertain robotic systems: predefined-time nonsingular terminal sliding-mode approach, IEEE Trans. Ind. Electron., 2022, 69, (10), pp 1051010520.10.1109/TIE.2022.3161810CrossRefGoogle Scholar
Xiao, Y., Yang, Y., Ye, D. and Zhao, Y. Scaling-transformation-based attitude tracking control for rigid spacecraft with prescribed time and prescribed bound, IEEE Trans. Aerospace Electron. Syst., 2025, 61, (1), pp 433442.10.1109/TAES.2024.3451454CrossRefGoogle Scholar
Xiao, Y., Yang, Y., Ye, D. and Zhang, J. Quantitative precision second-order temporal transformation-based pose control for spacecraft proximity operations, IEEE Trans. Aerosp. Electron. Syst., 2025, 61, (2), pp 19311941.10.1109/TAES.2024.3469167CrossRefGoogle Scholar
Xiao, Y., Wang, Y., Ye, D. and Sun, Z. Predefined-time robust attitude tracking control of flexible spacecraft with continuous and nonsingular performance, Aerosp. Sci. Technol., 2025, 159, p 110000. 10.1016/j.ast.2025.110000CrossRefGoogle Scholar
Xiao, Y., de Ruiter, A., Ye, D. and Sun, Z. Attitude coordination control for flexible spacecraft formation flying with guaranteed performance bounds, IEEE Trans. Aerosp. Electron. Syst., 2023, 59, (2), pp 15341550.Google Scholar
Chen, J., Chen, Z., Zhang, H., Xiao, B. and Cao, L. Predefined-time observer-based nonsingular sliding-mode control for spacecraft attitude stabilization, IEEE Trans. Circuits Syst. II: Express Briefs, 2024, 71, (3), pp 12911295.Google Scholar
Wang, Y., Wang, H., Liu, Y., Chen, J., Wu, T. and Zheng, W. Modeling and predefined-time anti-disturbance control for the aerial refueling phase of receiver aircraft, Appl. Math. Model., 2022, 112, pp 540559.10.1016/j.apm.2022.08.011CrossRefGoogle Scholar
Chen, J., Sun, R. and Zhu, B. Disturbance observer-based control for small nonlinear UAV systems with transient performance constraint, Aerosp. Sci. Technol., 2020, 105, p 106028. 10.1016/j.ast.2020.106028CrossRefGoogle Scholar
Castillo, A., García, P., Sanz, R. and Albertos, P. Enhanced extended state observer-based control for systems with mismatched uncertainties and disturbances, ISA Trans., 2018, 73, pp 110.10.1016/j.isatra.2017.12.005CrossRefGoogle ScholarPubMed
Zhang, X., Zong, Q., Dou, L., Tian, B. and Liu, W. Improved finite-time command filtered backstepping fault-tolerant control for flexible hypersonic vehicle, J. Franklin Inst., 2020, 357, (13), pp 85438565.10.1016/j.jfranklin.2020.05.017CrossRefGoogle Scholar
Li, B., Gong, W., Yang, Y., Xiao, B. and Ran, D. Appointed fixed time observer-based sliding mode control for a quadrotor UAV under external disturbances, IEEE Trans. Aerosp. Electron. Syst., 2022, 58, (1), pp 290303.10.1109/TAES.2021.3101562CrossRefGoogle Scholar
Ye, D., Zou, A.-M., Sun, S. and Xiao, Y. A predefined-time extended-state observer-based approach for velocity-free attitude control of spacecraft, IEEE Trans. Aerosp. Electron. Syst., 2023, 59, (6), pp 80518061.10.1109/TAES.2023.3297566CrossRefGoogle Scholar
Yang, H. and Liu, J. An adaptive RBF neural network control method for a class of nonlinear systems, IEEE/CAA J. Autom. Sinica, 2018, 5, (2), pp 457462.10.1109/JAS.2017.7510820CrossRefGoogle Scholar
Lv, J., Wang, C. and Kao, Y. Adaptive fixed-time quantized fault-tolerant attitude control for hypersonic reentry vehicle, Neurocomputing, 2023, 520, pp 386399.10.1016/j.neucom.2022.11.057CrossRefGoogle Scholar
Cheng, W., Zhang, K., Jiang, B. and Simani, S. Neural network observer-based prescribed-time fault-tolerant tracking control for heterogeneous multiagent systems with a leader of unknown disturbances, IEEE Trans. Aerosp. Electron. Syst., 2023, 59, (6), pp 90429053.10.1109/TAES.2023.3312630CrossRefGoogle Scholar
Ding, Y., Wang, X., Bai, Y. and Cui, N. Novel anti-saturation robust controller for flexible air-breathing hypersonic vehicle with actuator constraints, ISA Trans., 2020, 99, pp 95109.10.1016/j.isatra.2019.09.010CrossRefGoogle ScholarPubMed
Hu, X., Karimi, H.R., Wu, L. and Guo, Y. Model predictive control-based non-linear fault tolerant control for air-breathing hypersonic vehicles, IET Control Theory Appl., 2014, 8, (13), pp 11471153.10.1049/iet-cta.2013.0986CrossRefGoogle Scholar
Liu, C., Yue, X., Shi, K. and Sun, Z. Inertia-free attitude stabilization for flexible spacecraft with active vibration suppression, Int. J. Robust Nonlinear Control, 2019, 29, (18), pp 63116336.10.1002/rnc.4742CrossRefGoogle Scholar
Shao, K., Tang, R., Xu, F., Wang, X. and Zheng, J. Adaptive sliding mode control for uncertain Euler–Lagrange systems with input saturation, J. Franklin Inst., 2021, 358, (16), pp 83568376.10.1016/j.jfranklin.2021.08.027CrossRefGoogle Scholar
Ding, Y., Yue, X., Liu, C., Dai, H. and Chen, G. Finite-time controller design with adaptive fixed-time anti-saturation compensator for hypersonic vehicle, ISA Trans., 2022, 122, pp 96113.10.1016/j.isatra.2021.04.038CrossRefGoogle ScholarPubMed
Bao, C., Wang, P. and Tang, G. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase, Chin. J. Aeronaut., 2021, 34, (5), pp 535–55310.1016/j.cja.2020.11.009CrossRefGoogle Scholar
Riaz, S., Li, B., Qi, R. and Zhang, C. An adaptive predefined time sliding mode control for uncertain nonlinear cyber-physical servo system under cyber attacks, Sci. Rep., 2024, 14, (1), p 7361.10.1038/s41598-024-57775-8CrossRefGoogle ScholarPubMed
Liang, X., Wang, Q., Hu, C. and Dong, C. Fixed-time observer based fault tolerant attitude control for reusable launch vehicle with actuator faults, Aerosp. Sci. Technol., 2020, 107, p 106314.10.1016/j.ast.2020.106314CrossRefGoogle Scholar