Hostname: page-component-5b777bbd6c-v47t2 Total loading time: 0 Render date: 2025-06-19T01:02:43.241Z Has data issue: false hasContentIssue false

Challenges in emissions assessment for hybrid-electric regional aircraft

Published online by Cambridge University Press:  19 May 2025

G. Palaia*
Affiliation:
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
K. Abu Salem
Affiliation:
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
E. Carrera
Affiliation:
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
*
Correspoding author: G. Palaia; Email: giuseppe.palaia@polito.it

Abstract

This paper investigates a method for estimating emissions from hybrid-electric aircraft, providing a qualitative assessment of their potential environmental benefits. Limited data availability poses challenges, discussed in this study, for its rigorous evaluation. Proper characterisation of both ${{C}}{{{O}}_{{2}}}$ and non-${{C}}{{{O}}_{{2}}}$ emissions across the operating envelope is crucial. Existing databases and predictive models for turboshaft engines for full-thermal regional aircraft may not be reliable for hybrid-electric configurations, which could operate under uncommon conditions, as low thermal power supply during specific flight phases. This uncertainty highlights the limitations of current emission prediction models. The first of the present study examines non-${{C}}{{{O}}_{{2}}}$ emissions (${{N}}{{{O}}_{{x}}}$, HC, ${{S}}{{{O}}_{{2}}}$, CO) from hybrid-electric aircraft optimised for minimum block fuel, comparing them with those from thermal competitors. The second part evaluates ${{C}}{{{O}}_{{2}}}$ emissions, considering both in-flight and electricity generation contributions. Results indicate that hybrid-electric configurations could reduce non-${{C}}{{{O}}_{{2}}}$ emissions for both the entire mission and the landing-take-off cycle. However, ${{C}}{{{O}}_{{2}}}$ reductions are only significant for short design ranges and could be marginal if electricity generation does not shift to fully renewable sources.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abu Salem, K., Palaia, G., and Quarta, A.A. Review of hybrid-electric aircraft technologies and designs: critical analysis and novel solutions, Prog. Aerosp. Sci., 2023, 141. doi: 10.1016/j.paerosci.2023.100924 CrossRefGoogle Scholar
Kuśmierek, A., Galiński, C., and Stalewski, W. Review of the hybrid gas-electric aircraft propulsion systems versus alternative systems, Prog. Aerosp. Sci., 2023, 141, p 100925. doi: 10.1016/j.paerosci.2023.100925" CrossRefGoogle Scholar
Barzkar, A., and Ghassemi, M. Components of electrical power systems in more and all-electric aircraft: a review, IEEE Trans. Transport. Electrif., 2022, 8. doi: 10.1109/TTE.2022.3174362 Google Scholar
Moebs, N., Eisenhut, D., Windels, E., van der Pols, J., and Strohmayer, A. Adaptive initial sizing method and safety assessment for hybrid-electric regional aircraft, Aerospace, 2022, 9. doi: 10.3390/aerospace9030150 CrossRefGoogle Scholar
Papathakis, K.V., Burkhardt, P.A., David, W.E., and Alaric, M.S. Safety considerations for electric, hybrid-electric, and turbo-electric distributed propulsion aircraft testbeds, in 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, 10–12 July 2017, 2017. doi: 10.2514/6.2017-5032 CrossRefGoogle Scholar
Trainelli, L., Salucci, F., Riboldi, C.E.D., Rolando, A., and Bigoni, F. Optimal sizing and operation of airport infrastructures in support of electric-powered aviation. Aerospace, 2021, 8. doi: 10.3390/aerospace8020040 CrossRefGoogle Scholar
Meindl, M., de Ruiter, C., Marciello, V., et al. Decarbonised future regional airport infrastructure, Aerospace, 2023, 10. doi: 10.3390/aerospace10030283 CrossRefGoogle Scholar
Benzaquen, J., He, J., and Mirafzal, B. Toward more electric powertrains in aircraft: technical challenges and advancements, CES Trans. Electr. Mach. Syst., 2021, 5. doi: 10.30941/CESTEMS.2021.00022 Google Scholar
Viswanathan, V., Epstein, A., Chiang, Y., et al. The challenges and opportunities of battery-powered flight, Nature, 2022, 601, pp 519525. doi: 10.1038/s41586-021-04139-1 CrossRefGoogle ScholarPubMed
Palaia, G., Abu Salem, K., and Quarta, A.A. Parametric analysis for hybrid–electric regional aircraft conceptual design and development, Appl. Sci., 2023, 13. doi: 10.3390/app131911113 CrossRefGoogle Scholar
Abu Salem, K., Palaia, G., Quarta, A.A., and Chiarelli, M.R. Medium-range aircraft conceptual design from a local air quality and climate change viewpoint, Energies, 2023, 16. doi: 10.3390/en16104013 CrossRefGoogle Scholar
Prapotnik, B.A., Kamnik, R., Marksel, M., and Božičnik, S. Market and technological perspectives for the new generation of regional passenger aircraft, Energies, 2019, 12. doi: 10.3390/en12101864 Google Scholar
Eisenhut, D, Moebs, N., Windels, E., Bergmann, D., Geiß, I., Reis, R., and Strohmayer, A. Aircraft requirements for sustainable regional aviation, Aerospace, 2021, 8. doi: 10.3390/aerospace8030061 CrossRefGoogle Scholar
Scholz, A.E., Trifonov, D., and Hornung, M. Environmental life cycle assessment and operating cost analysis of a conceptual battery hybrid-electric transport aircraft, CEAS Aeronaut. J., 2022, 13. doi: 10.1007/s13272-021-00556-0 CrossRefGoogle Scholar
Thonemann, N., Saavedra-Rubio, K., Pierrat, E., et al. Prospective life cycle inventory datasets for conventional and hybrid-electric aircraft technologies, J. Clean. Prod., 2024, 434. doi: 10.1016/j.jclepro.2023.140314 CrossRefGoogle Scholar
Brooker, P. Civil aircraft design priorities: air quality? Climate change? Noise? Aeronaut. J., 110, 2006, pp 517532. doi: 10.1017/S0001924000001408 CrossRefGoogle Scholar
Stettler, M.E.J., Eastham, S., and Barrett, S.R.H. Air quality and public health impacts of UK airports. Part I: emissions, Atmos. Environ., 2011, 45. doi: 10.1016/j.atmosenv.2011.07.012 CrossRefGoogle Scholar
Parker, R. From blue skies to green skies: Engine technology to reduce the climate-change impacts of aviation, Technol. Anal. Strat. Manag., 2009, 21. doi: 10.1080/09537320802557301 CrossRefGoogle Scholar
Lee, D.S., Pitari, G., Grewe, V., et al. Transport impacts on atmosphere and climate: aviation, Atmos. Environ., 2010, 44. doi: 10.1016/j.atmosenv.2009.06.005 CrossRefGoogle ScholarPubMed
Brazzola, N., Patt, A., and Wohland, J. Definitions and implications of climate-neutral aviation, Nat. Clim. Change, 2022, 12, pp 761767. doi: 10.1038/s41558-022-01404-7 CrossRefGoogle Scholar
Rogelj, J. Disentangling the effects of CO2 and short-lived climate forcer mitigation, Proc. Natl. Acad. Sci., 111, pp 1632516330. doi: 10.1073/pnas.1415631111 CrossRefGoogle Scholar
Proesmans, P.J., and Vos, R. Airplane design optimization for minimal global warming impact, J. Aircr., 2022, 59, pp 13631381. doi: 10.2514/1.C036529 CrossRefGoogle Scholar
Tasca, A.L., Cipolla, V., Abu Salem, K., and Puccini, M. Innovative box-wing aircraft: emissions and climate change, Sustainability, 2021, 13. doi: 10.3390/su13063282 CrossRefGoogle Scholar
Filippone, A., and Parkes, B. Evaluation of commuter airplane emissions: a European case study, Transport. Res. Part D: Transport Environ., 2021, 98. doi: 10.1016/j.trd.2021.102979 CrossRefGoogle Scholar
Filippone, A., and Bojdo, N. Statistical model for gas turbine engines exhaust emissions, Transport. Res. Part D: Transport Environ., 2018, 59, pp 451463. doi: 10.1016/j.trd.2018.01.019 CrossRefGoogle Scholar
Palaia, G., Zanetti, D., Abu Salem, K., et al. THEA-CODE: a design tool for the conceptual design of hybrid electric aircraft with conventional or unconventional airframe configurations, Mech. Ind., 2021, 22. doi: 10.1051/meca/2021012 Google Scholar
Palaia, G. Design and performance assessment methodologies for box-wing hybrid-electric aircraft from urban to regional transport applications. PhD Thesis, University of Pisa, 2022. https://etd.adm.unipi.it/t/etd-11092022-150110/ Google Scholar
Rizzo, E., and Frediani, A. Application of optimisation algorithms to aircraft aerodynamics, in Variational Analysis and Aerospace Engineering, Springer Optimization and Its Applications, 33. New York, NY: Springer, 2009. doi: 10.1007/978-0-387-95857-6_23 CrossRefGoogle Scholar
Abu Salem, K., Palaia, G., Cipolla, V., et al. Tools and methodologies for box-wing aircraft conceptual aerodynamic design and aeromechanic analysis, Mech. Ind., 2021, 22. doi: 10.1051/meca/2021037 Google Scholar
Drela, M., and Youngren, H. AVL 3.36 User Primer, Online software manual, 2017. https://perma.cc/R35R-W29F.Google Scholar
Raymer, D. Aircraft Design: A Conceptual Approach, 6th Edition. American Institute of Aeronautics and Astronautics, AIAA, 2018, Washington, DC. ISBN: 9781600869112Google Scholar
Drela, M., and Youngren, H. XFOIL 6.9 user primer, Online software manual, 2001. https://web.mit.edu/drela/Public/web/xfoil/.Google Scholar
Cipolla, V., Abu Salem, K., Palaia, G., Binante, V., and Zanetti, D. A DoE-based approach for the implementation of structural surrogate models in the early stage design of box-wing aircraft, Aerosp. Sci. Technol., 117, 2021. doi: 10.1016/j.ast.2021.106968 CrossRefGoogle Scholar
Palaia, G., Abu Salem, K., Binante, V., and Carrera, E. Metamodeling approach for wing structural sizing of box-wing aircraft, J. Aircr., 2025, pp 110. doi: 10.2514/1.C038131 CrossRefGoogle Scholar
Wells, D.P., Horvath, B.L., and McCullers, L.A. The flight optimization system weights estimation method, NASA Tech. Rep., 2017. https://ntrs.nasa.gov/citations/20170005851 Google Scholar
Sforza, P.M. Commercial Airplane Design Principles. Amsterdam, The Netherlands: Elsevier, 2014. ISBN: 9780124199538.Google Scholar
Pornet, C., and Isikveren, A.T. Conceptual design of hybrid-electric transport aircraft, Prog. Aerosp. Sci., 2015, 79. doi: 10.1016/j.paerosci.2015.09.002 CrossRefGoogle Scholar
Palaia, G., and Abu Salem, K. Mission performance analysis of hybrid-electric regional aircraft, Aerospace, 2023, 10. doi: 10.3390/aerospace10030246 CrossRefGoogle Scholar
Wilkerson, J.T., Jacobson, M.Z., Malwitz, A., et al. Analysis of emission data from global commercial aviation: 2004 and 2006, Atmos. Chem. Phys., 2010, 10, pp 63916408. doi: 10.5194/acp-10-6391-2010 CrossRefGoogle Scholar
Kapadia, Z.Z., Spracklen, D.V., Arnold, S.R., et al. Impacts of aviation fuel sulfur content on climate and human health, Atmos. Chem. Phys., 2016, 16, pp 1052110541. doi: 10.5194/acp-16-10521-2016 CrossRefGoogle Scholar
DuBois, D., and Paynter, G.C. “Fuel Flow Method2” for estimating aircraft emissions, J. Aerosp., 2006, 115, pp 114. doi: 10.4271/2006-01-1987 Google Scholar
Baughcum, S.L., Tritz, T.G., Henderson, S.C., and Pickett, D.C. Scheduled civil aircraft emission inventories for 1992: Database development and analysis, NASA Contractor Report 4700, 1992. https://ntrs.nasa.gov/api/citations/19960038445/downloads/19960038445.pdf Google Scholar
Avions Transport Regional. ATR: the optimum choice for a friendly environment, Modern Transport Environ., 2001. https://web.archive.org/web/20160808173542/http://web.fc.fi/data/files/ATR_TheOptimumChoice.pdf Google Scholar
Schaefer, M., and Bartosch, S. Overview on fuel flow correlation methods for the calculation of NOx, CO and HC emissions and their implementation into aircraft performance software. DLR Institut für Antriebstechnik, Report number: IB-325-11-13.Google Scholar
Overton, J. The Growth in Greenhouse Gas Emissions from Commercial Aviation. Environmental and Energy Study Institute, 2022. https://www.eesi.org/papers/view/fact-sheet-the-growth-in-greenhouse-gas-emissions-from-commercial-aviation Google Scholar
Hoelzen, J., Liu, Y., Bensmann, B., Winnefeld, C., Elham, A., Friedrichs, J., and Hanke-Rauschenbach, R. Conceptual design of operation strategies for hybrid electric aircraft. Energies, 11, (217), pp 126, 2018. doi: 10.3390/en11010217 CrossRefGoogle Scholar
Hainsch, K., Göke, L., Kemfert, C., Oei, P.Y., and Hirschhausen, C.V. European green deal: using ambitious climate targets and renewable energy to climb out of the economic crisis, DIW Weekly Rep., 2020, 10, pp 303310. doi: 10.18723/DIW_DWR:2020-28-1 Google Scholar
Kougias, I., Taylor, N., Kakoulaki, G., and Jäger-Waldau, A. The role of photovoltaics for the European green deal and the recovery plan, Renew. Sustain. Energy Rev., 2021, 144. doi: 10.1016/j.rser.2021.111017 CrossRefGoogle Scholar
Abu Salem, K., Palaia, G., and Quarta, A.A. Impact of figures of merit selection on the hybrid-electric regional aircraft performance analysis, Energies, 2023, 16. doi: 10.3390/en16237881 CrossRefGoogle Scholar