Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T11:59:52.620Z Has data issue: false hasContentIssue false

Applications and classifications of unmanned aerial vehicles: A literature review with focus on multi-rotors

Published online by Cambridge University Press:  03 October 2022

M.H. Sabour*
Affiliation:
Department of Aerospace Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
P. Jafary
Affiliation:
Department of Aerospace Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
S. Nematiyan
Affiliation:
Department of Aerospace Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
*
*Corresponding author. Email: sabourmh@ut.ac.ir

Abstract

During the past two decades, with the advancement of avionics, control systems, design, product methods, and communication systems, UAVs have gained more interest from both civil and military customers. Hence, more researchers have dedicated their time to developing new applications for drones and improving their performance. In this study, a literature review on drone applications is conducted. It is explained that they can be more effective and beneficial when merged with preexisting systems, and thus making a system of systems. Further, we have classified UAV applications more comprehensively. This classification can be very useful for providing insights when designing new UAVs. Finally, previous works are discussed thoroughly and diagrams are developed to show the research focus in this field. These statistical diagrams can also be used as a gap analysis tool.

Type
Survey Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jamshidi, M. System of Systems Engineering, 2008, John Wiley & Sons, Inc. doi: 10.1002/9780470403501 CrossRefGoogle Scholar
Klein, J. and van Vliet, H. A systematic review of system-of-systems architecture research, Proceedings of the 9th International ACM Sigsoft Conference on Quality of Software Architectures - QoSA’13, Vancouver, British Columbia, Canada, 2013, p 13. doi: 10.1145/2465478.2465490.CrossRefGoogle Scholar
Austin, R. Unmanned Aircraft Systems: UAVS Design, Development and Deployment, John Wiley & Sons, 2010, Chichester, UK. doi: 10.1002/9780470664797.CrossRefGoogle Scholar
Chamayou, G. and Lloyd, J. A Theory of the Drone, The New Press, 2015, New York.Google Scholar
Hassanalian, M. and Abdelkefi, A. Classifications, applications, and design challenges of drones: A review, Prog. Aerosp. Sci., 2017, 91, pp 99131. doi: 10.1016/j.paerosci.2017.04.003.CrossRefGoogle Scholar
Washington, A., Clothier, R.A. and Silva, J. A review of unmanned aircraft system ground risk models, Prog. Aerosp. Sci., 2017, 95, pp 2444. doi: 10.1016/j.paerosci.2017.10.001.CrossRefGoogle Scholar
Finn, R.L. and Wright, D. Unmanned aircraft systems: Surveillance, ethics, and privacy in civil applications, Comput. Law Secur. Rev., 2012, 28, (2), pp 184194. doi: 10.1016/j.clsr.2012.01.005.CrossRefGoogle Scholar
Bloss, R. Unmanned vehicles while becoming smaller and smarter are addressing new applications in medical, agriculture, in addition to military and security, Ind. Robot Int. J., 2014, 41, (1), pp 8286. doi: 10.1108/IR-10-2013-410.CrossRefGoogle Scholar
Bijjahalli, S., Sabatini, R. and Gardi, A. Advances in intelligent and autonomous navigation systems for small UAS, Prog. Aerosp. Sci., 2020, 115, p 100617. doi: 10.1016/j.paerosci.2020.100617.CrossRefGoogle Scholar
Brelje, B.J. and Martins, J.R.R.A. Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches, Prog. Aerosp. Sci., 2019, 104, pp 119. doi: 10.1016/j.paerosci.2018.06.004.CrossRefGoogle Scholar
Liu, Y., Kreimeier, M., Stumpf, E., Zhou, Y. and Liu, H. Overview of recent endeavors on personal aerial vehicles: A focus on the US and Europe led research activities, Prog. Aerosp. Sci., 2017, 91, pp 5366. doi: 10.1016/j.paerosci.2017.03.001.CrossRefGoogle Scholar
Vargas-Ramírez, N. and Paneque-Gálvez, J. The global emergence of community drones (2012–2017), Drones, 2019, 3, (4), p 76. doi: 10.3390/drones3040076.CrossRefGoogle Scholar
Tong, S.-Y., Hsu, D.-J. and Juang, J.-G. Sensor fusion and gesture control for quadcopter application, Sens. Mater., 2019, 31, (5), p 1679. doi: 10.18494/SAM.2019.2329.Google Scholar
Beloev, I.H. A review on current and emerging application possibilities for unmanned aerial vehicles, Acta Technol. Agric., 2016, 19, 3, pp 7076. doi: 10.1515/ata-2016-0015.Google Scholar
Macrina, G., Di Puglia Pugliese, L., Guerriero, F. and Laporte, G. Drone-aided routing: A literature review, Transp. Res. Part C Emerg. Technol., 2020, 120, p 102762. doi: 10.1016/j.trc.2020.102762.CrossRefGoogle Scholar
Ayamga, M., Akaba, S. and Nyaaba, A.A. Multifaceted applicability of drones: A review, Technol. Forecast. Soc. Change, 2021, 167, p 120677. doi: 10.1016/j.techfore.2021.120677.CrossRefGoogle Scholar
González-Jorge, H., Martínez-Sánchez, J., Bueno, M. and Arias, P. Unmanned aerial systems for civil applications: A review, Drones, 2017, 1, (1), p 2. doi: 10.3390/drones1010002.CrossRefGoogle Scholar
Nielsen, C.B., Larsen, P.G., Fitzgerald, J., Woodcock, J. and Peleska, J. Systems of systems engineering: Basic concepts, model-based techniques, and research directions,” ACM Comput. Surv., 2015, 48, (2), pp 141. doi: 10.1145/2794381.CrossRefGoogle Scholar
Amirreze, K. A new systematic approach in UAV DESIGN ANALYSIS BASED on SDSM method, J. Aeronaut. Aerosp. Eng., 2013, 02, (02). doi: 10.4172/2168-9792.S1-001.CrossRefGoogle Scholar
Abarca, M., Saito, C., Cerna, J., Paredes, R. and Cuellar, F. An interdisciplinary unmanned aerial vehicles course with practical applications, 2017 IEEE Global Engineering Education Conference (EDUCON), Athens, Greece, Apr. 2017, pp 255261. doi: 10.1109/EDUCON.2017.7942856.CrossRefGoogle Scholar
Ziemer, S., Glas, M. and Stenz, G. A conceptual design tool for multi-disciplinary aircraft design, 2011 Aerospace Conference, Big Sky, USA, 2011, pp 113. doi: 10.1109/AERO.2011.5747531.CrossRefGoogle Scholar
Howe, D. Aircraft Conceptual Design Synthesis, Professional Engineering Pub, 2000, London.CrossRefGoogle Scholar
Sadraey, M. and Bertozzi, N. Systems engineering approach in aircraft design education: Techniques and challenges, 2015 ASEE Annual Conference and Exposition Proceedings, Seattle, Washington, 2015, pp 26.1453.126.1453.15. doi: 10.18260/p.24790.CrossRefGoogle Scholar
Gudmundsson, S. General Aviation Aircraft Design: Applied Methods and Procedures, 4th ed, Butterworth-Heinemann, 2014, Oxford; Waltham, MA.Google Scholar
Sadraey, M. Unmanned aircraft design: A review of fundamentals, Synth. Lect. Mech. Eng., 2017, 1, (2), pp i–193. doi: 10.2200/S00789ED1V01Y201707MEC004.CrossRefGoogle Scholar
Mitka, E. and Mouroutsos, S.G. Classification of drones, Am. J. Eng. Res., 2017, 6, (7), pp 36–41.Google Scholar
Hassanalian, M. and Abdelkefi, A. Classifications, applications, and design challenges of drones: A review, Prog. Aerosp. Sci., 2017, 91, pp 99131. doi: 10.1016/j.paerosci.2017.04.003.CrossRefGoogle Scholar
Pant, R.K., Gogate, S.D. and Arora, P. Economic parameters in the conceptual design optimization of an air-taxi aircraft, J. Aircr., 1995, 32, (4), pp 696702. doi: 10.2514/3.46779.CrossRefGoogle Scholar
Bonnefoy, P.A. Simulating air taxi networks, Proceedings of the Winter Simulation Conference, 2005, Orlando, FL, USA, 2005, pp 15861595. doi: 10.1109/WSC.2005.1574427.CrossRefGoogle Scholar
Apvrille, L., Tanzi, T. and Dugelay, J.-L. Autonomous drones for assisting rescue services within the context of natural disasters, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 2014, pp 14. doi: 10.1109/URSIGASS.2014.6929384.CrossRefGoogle Scholar
Lee, D.W., Bass, E.J. and Patek, S.D. Towards a transportation network model for air taxi dispatch planning, 2005 IEEE Design Symposium, Systems, and Information Engineering, Charlottesville, VA, USA, 2005, pp 293301. doi: 10.1109/SIEDS.2005.193271.CrossRefGoogle Scholar
Boyd, J., Bass, E., Patek, S. and Lee, D. Investigation of future air taxi services using discrete-event simulation, 2006 IEEE Systems and Information Engineering Design Symposium, Charlottesville, VA, USA, 2006, pp 2530. doi: 10.1109/SIEDS.2006.278708.CrossRefGoogle Scholar
Baik, H., Trani, A.A., Hinze, N., Swingle, H., Ashiabor, S. and Seshadri, A. Forecasting model for air taxi, commercial airline, and automobile demand in the United States, Transp. Res. Rec. J. Transp. Res. Board, 2008, 2052, (1), pp 920. doi: 10.3141/2052-02.CrossRefGoogle Scholar
Lee, D.W., Bass, E.J., Patek, S.D. and Boyd, J.A. A traffic engineering model for air taxi services, Transp. Res. Part E Logist. Transp. Rev., 2008, 44, (6), pp 11391161. doi: 10.1016/j.tre.2007.10.004.CrossRefGoogle Scholar
Mane, M. and Crossley, W.A. Importance of aircraft type and operational factors for air taxi cost feasibility, J. Aircr., 2009, 46, (4), pp 12221230. doi: 10.2514/1.40146.CrossRefGoogle Scholar
Archer, J.R., Black, A.W. and Roy, S. Analyzing air taxi operations from a system-of-systems perspective using agent-based modeling, Purdue University West Lafoyette, p 15, 2012.Google Scholar
Fagerholt, K., Foss, B.A. and Horgen, O.J. A decision support model for establishing an air taxi service: A case study, J. Oper. Res. Soc., 2009, 60, (9), pp 11731182. doi: 10.1057/palgrave.jors.2602635.CrossRefGoogle Scholar
van der Zwan, F.M., Wils, K. and Ghijs, S.S.A. Development of an aircraft routing system for an air taxi operator, in Aeronautics and Astronautics, Mulder, M. (Ed), InTech, 2011. doi: 10.5772/25655.Google Scholar
Enconniere, J., Ortiz-Carretero, J. and Pachidis, V. Mission performance analysis of a conceptual coaxial rotorcraft for air taxi applications, Aerosp. Sci. Technol., 2017, 69, pp 114. doi: 10.1016/j.ast.2017.06.015.CrossRefGoogle Scholar
Johnson, W., Silva, C. and Solis, E. Concept vehicles for VTOL air taxi operations, Technical Conference on Aeromechanics Design for Transformative Vertical Flight, San Francisco, CA, January 16–19, p 24, 218.Google Scholar
Husemann, M., Glaser, C.K. and Stumpf, E. Assessment of a fuel cell powered air taxi in urban flight conditions, Presented at the AIAA SciTech 2019 Forum, San Diego, California, 2019. doi: 10.2514/6.2019-0812.CrossRefGoogle Scholar
Planing, P. and Pinar, Y. Acceptance of air taxis - A field study during the first flight of an air taxi in a European city, Open Science Framework, preprint, 2019. doi: 10.31219/osf.io/rqgpc.CrossRefGoogle Scholar
Yang, X. and Wei, P. Autonomous on-demand free flight operations in urban air mobility using monte carlo tree search, International Conference on Research in Air Transportation (ICRAT), Barcelona, Spain, p 8, 2018.CrossRefGoogle Scholar
Verma, S., Keeler, J., Edwards, T.E. and Dulchinos, V. Exploration of near-term potential routes and procedures for urban air mobility, Presented at the AIAA Aviation 2019 Forum, Dallas, Texas, 2019. doi: 10.2514/6.2019-3624.CrossRefGoogle Scholar
Rajendran, S. and Zack, J. Insights on strategic air taxi network infrastructure locations using an iterative constrained clustering approach, Transp. Res. Part E Logist. Transp. Rev., 2019, 28, pp 470505. doi: 10.1016/j.tre.2019.06.003.CrossRefGoogle Scholar
Roy, S., Kotwicz Herniczek, M.T., Leonard, C., Jha, A., Wang, N., German, B. and Garrow, L. A multi-commodity network flow approach for optimal flight schedules for an airport shuttle air taxi service, Presented at the AIAA SciTech 2020 Forum, Orlando, FL, p 0975, 2020. doi: 10.2514/6.2020-0975.CrossRefGoogle Scholar
Roy, S., Kotwicz Herniczek, M., German, B. and Garrow, L.A. User base estimation methodology for an eVTOL business airport shuttle air taxi service, Presented at the AIAA Aviation 2020 Forum, Virtual Event, 2020. doi: 10.2514/6.2020-3259.CrossRefGoogle Scholar
Rajendran, S. and Shulman, J. Study of emerging air taxi network operation using discrete-event systems simulation approach, J. Air Transp. Manag., 2020, 87, p 101857. doi: 10.1016/j.jairtraman.2020.101857.CrossRefGoogle Scholar
Rajendran, S. and Pagel, E. Recommendations for emerging air taxi network operations based on online review analysis of helicopter services, Heliyon, 2020, 6, (12), p e05581. doi: 10.1016/j.heliyon.2020.e05581.CrossRefGoogle ScholarPubMed
Ventura Diaz, P., Caracuel Rubio, R. and Yoon, S. Simulations of ducted and coaxial rotors for air taxi operations, Presented at the AIAA Aviation 2019 Forum, Dallas, Texas, 2019. doi: 10.2514/6.2019-2825.CrossRefGoogle Scholar
Ventura Diaz, P., Johnson, W., Ahmad, J. and Yoon, S. The side-by-side urban air taxi concept, Presented at the AIAA Aviation 2019 Forum, Dallas, Texas, 2019. doi: 10.2514/6.2019-2828.CrossRefGoogle Scholar
Ventura Diaz, P. and Yoon, S. Computational study of NASA’s quadrotor urban air taxi concept, Presented at the AIAA SciTech 2020 Forum, Orlando, FL, 2020. doi: 10.2514/6.2020-0302.CrossRefGoogle Scholar
Guruswamy, G.P. Takeoff simulation of Lift+Cruise air taxi by using Navier–Stokes equations, AIAA J., 2020, 58, (3), pp 994997. doi: 10.2514/1.J059212.CrossRefGoogle Scholar
Schuet, S., Malpica, C., Lombaerts, T., Kaneshige, J., Withrow, S., Hardy, G. and Aires, J. A modeling approach for handling qualities and controls safety analysis of electric air taxi vehicles, Presented at the AIAA Aviation 2020 Forum, Virtual Event, p 3188, 2020. doi: 10.2514/6.2020-3188.CrossRefGoogle Scholar
Abrahamsen, H.B. How to improve situation assessment and decision-making in a simulated mass casualty incident by using an unmanned aerial vehicle, Scand. J. Trauma Resusc. Emerg. Med., 2014, 22, (S1), pp P2, 1757-7241-22-S1-P2. doi: 10.1186/1757-7241-22-S1-P2.CrossRefGoogle Scholar
Thamm, F.-P., Brieger, N., Neitzke, K.-P., Meyer, M., Jansen, R. and Mönninghof, M. Songbird – An innovative UAS combining the advantages of fixed wing and multi rotor UAS, ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 2015, XL-1/W4, pp 345349. doi: 10.5194/isprsarchives-XL-1-W4-345-2015.CrossRefGoogle Scholar
Mihai, R.-V., Vidan, C., Pahonie, R.-C., Matei, P., Stoica, A.-M. and Adochiei, I. A semi-autonomous small scale paramotor used for medical emergency situations, 2015 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 2015, pp 14. doi: 10.1109/EHB.2015.7391531.CrossRefGoogle Scholar
Kumar, G.D. and Jeeva, B. Drone ambulance for outdoor sports, Asian J. Appl. Sci. Technol., 2017, 1, (5), pp 44–49.Google Scholar
Rizwan, R.R., Shehzad, M.N. and Awais, M.N. Quadcopter-based rapid response first-aid unit with live video monitoring, Drones, 2019, 3, (2), p 37. doi: 10.3390/drones3020037.CrossRefGoogle Scholar
Liu, H., Lv, M., Gao, Y., Li, J., Lan, J. and Gao, W. Information processing system design for multi-rotor UAV-based earthquake rescue, Presented at the Man-Machine-Environment System Engineering, 2020. doi: 10.1007/978-981-15-6978-4_39.CrossRefGoogle Scholar
Sudula, V.S.P. Design and development of micro controller drone for civil applications, p 7, 2020.Google Scholar
Sanjana, P. and Prathilothamai, M. Drone design for first aid kit delivery in emergency situation, 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2020, pp 215220. doi: 10.1109/ICACCS48705.2020.9074487.CrossRefGoogle Scholar
Zhang, M., Li, Q., Shi, L., Ge, F., Yu, H., Wang, H., Khan, Z.U. and Zhang, M. The Potential of Multi-rotor Drone to Strengthen Emergency Medical Service System: a preliminary study in a Chinese county, Review, preprint, Apr. 2021. doi: 10.21203/rs.3.rs-391571/v1.CrossRefGoogle Scholar
Madawalagama, S., Munasinghe, N., Dampegama, S.D.P.J. and Samarakoon, L. Low-cost aerial mapping with consumer-grade drones, 37th Asian Conference on Remote Sensing, pp 1–8, 2016.Google Scholar
Sonnemann, T.F., Hung, J.U. and Hofman, C.L. Mapping indigenous settlement topography in the caribbean using drones, 2016. doi: 10.3390/rs8100791.CrossRefGoogle Scholar
Ventura, D., Bruno, M., Lasinio, G.J.L. and Belluscio, A. A low-cost drone-based application for identifying and mapping of coastal fish nursery grounds, Estuar. Coast. Shelf Sci., 2016. Available at: https://doi.org/10.1016/j.ecss.2016.01.030 CrossRefGoogle Scholar
Radjawali, I., Pye, O. and Flitner, M. Recognition through reconnaissance? Using drones for counter-mapping in Indonesia, J. Peasant Stud., 2017. doi: 10.1080/03066150.2016.1264937.CrossRefGoogle Scholar
Suh, J. and Choi, Y. Mapping hazardous mining-induced sinkhole subsidence using unmanned aerial vehicle (drone) photogrammetry, Environ. Earth Sci., 2017. doi: 10.1007/s12665-017-6458-3.CrossRefGoogle Scholar
Kalantar, B., Mansor, S.B., Sameen, M.I., Pradhan, B. and Shafri, H.Z.M. Drone-based land-cover mapping using a fuzzy unordered rule induction algorithm integrated into object-based image analysis, Int. J. Remote Sens., 2017, 38, (8–10), pp 25352556. doi: 10.1080/01431161.2016.1277043.CrossRefGoogle Scholar
Paneque-Gálvez, J., Vargas-Ramírez, N., Napoletano, B. and Cummings, A. Grassroots innovation using drones for indigenous mapping and monitoring, Land, 2017, 6, (4), p 86. doi: 10.3390/land6040086.CrossRefGoogle Scholar
Gupta, S.K. and Shukla, D.P. Application of drone for landslide mapping, dimension estimation and its 3D reconstruction, J. Indian Soc. Remote Sens., 2018, 46, (6), pp 903914. doi: 10.1007/s12524-017-0727-1.CrossRefGoogle Scholar
Yang, B., Hawthorne, T.L., Hessing-Lewis, M., Duffy, E.J., Reshitnyk, L.Y., Feinman, M. and Searson, H. Developing an introductory UAV/drone mapping training program for seagrass monitoring and research, Drones, 2020, 4, (4), p 70. doi: 10.3390/drones4040070.CrossRefGoogle Scholar
Hasan, K.M., Newaz, S.H.S. and Ahsan, Md.S. Design and development of an aircraft type portable drone for surveillance and disaster management, Int. J. Intell. Unmanned Syst., 2018, 6, (3), pp 147159. doi: 10.1108/IJIUS-02-2018-0004.CrossRefGoogle Scholar
Sehrawat, A., Choudhury, T.A. and Raj, G. Surveillance drone for disaster management and military security, 2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, 2017, p 470475. doi: 10.1109/CCAA.2017.8229846.CrossRefGoogle Scholar
Lee, S., Har, D. and Kum, D. Drone-assisted disaster management: Finding victims via infrared camera and lidar sensor fusion, 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Nadi, 2016, pp 8489. doi: 10.1109/APWC-on-CSE.2016.025.CrossRefGoogle Scholar
Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M. and Rinner, B. Networked UAVs as aerial sensor network for disaster management applications, E Elektrotechnik Informationstechnik, 2010, 127, (3), pp 5663. doi: 10.1007/s00502-010-0717-2.CrossRefGoogle Scholar
Restas, A. Drone applications for preventing and responding HAZMAT disaster, World J. Eng. Technol., 2016, 04, (03), pp 7684. doi: 10.4236/wjet.2016.43C010.CrossRefGoogle Scholar
Restas, A. Water-related disaster management supported by drone applications, World J. Eng. Technol., 2018, 06, (02), pp 116126. doi: 10.4236/wjet.2018.62B010.CrossRefGoogle Scholar
Rabta, B., Wankmüller, C. and Reiner, G. A drone fleet model for last-mile distribution in disaster relief operations, Int. J. Disaster Risk Reduct., 2018, 28, pp 107112. doi: 10.1016/j.ijdrr.2018.02.020.CrossRefGoogle Scholar
Veroustraete, F. The rise of the drones in agriculture, EC Agri., 2015, 2, (2), pp 325–327.Google Scholar
Michael, N., Shen, S., Mohta, K., Kumar, V., Nagatani, K., Okada, Y., Kiribayashi, S., Otake, K., Yoshida, K., Ohno, K. and Takeuchi, E. Collaborative mapping of an earthquake damaged building via ground and aerial robots, in Field and Service Robotics, vol. 92, Yoshida, K. and Tadokoro, S. (Eds), Springer Berlin Heidelberg, 2014, Berlin, Heidelberg, pp 3347. doi: 10.1007/978-3-642-40686-7_3.CrossRefGoogle Scholar
Erdelj, M., Natalizio, E., Chowdhury, K.R. and Akyildiz, I.F. Help from the sky: Leveraging UAVs for disaster management, IEEE Pervasive Comput., 2017, 16, (1), pp 2432. doi: 10.1109/MPRV.2017.11.CrossRefGoogle Scholar
Kruijff, G.-J.M., Pirri, F., Gianni, M., Papadakis, P., Pizzoli, M., Sinha, A., Tretyakov, V., Linder, T., Pianese, E., Corrao, S. and Priori, F. Rescue robots at earthquake-hit Mirandola, Italy: A field report, 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), College Station, TX, USA, 2012, pp 18. doi: 10.1109/SSRR.2012.6523866.CrossRefGoogle Scholar
Erdelj, M. and Natalizio, E. UAV-assisted disaster management: Applications and open issues, 2016 International Conference on Computing, Networking and Communications (ICNC), Kauai, HI, USA, 2016, pp 15. doi: 10.1109/ICCNC.2016.7440563.CrossRefGoogle Scholar
Murphy, R.R. and Stover, S. Rescue robots for mudslides: A descriptive study of the 2005 La Conchita mudslide response, J. Field Robot., 2008, 25, (1–2), pp 316. doi: 10.1002/rob.20207.CrossRefGoogle Scholar
Stehr, N.J. Drones: The newest technology for precision agriculture, Nat. Sci. Educ., 2015, 44, 1, pp 8991. doi: 10.4195/nse2015.04.0772.CrossRefGoogle Scholar
Navia, J., Mondragon, I., Patino, D. and Colorado, J. Multispectral mapping in agriculture: Terrain mosaic using an autonomous quadcopter UAV, 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 2016, pp 13511358. doi: 10.1109/ICUAS.2016.7502606.CrossRefGoogle Scholar
Puri, V., Nayyar, A. and Raja, L. Agriculture drones: A modern breakthrough in precision agriculture, J. Stat. Manag. Syst., 2017, 20, (4), pp 507518. doi: 10.1080/09720510.2017.1395171.Google Scholar
Saheb, S.H. and Babu, G.S. Design and analysis of light weight agriculture robot, Glob. J. Eng. Res., 2017, p 19.Google Scholar
Koh, L.P. and Wich, S.A. Dawn of drone ecology: Low-cost autonomous aerial vehicles for conservation, Trop. Conserv. Sci., 2012, 5, (2), pp 121132. doi: 10.1177/19400829120500202.CrossRefGoogle Scholar
Danh, L.V.Q., Tuyen, T.P. and Duy, N.T.K. Design of a quadcopter autopilot system to take aerial photography for remote sensing applications in agriculture, 2016, 11, (7), p 7.Google Scholar
Ribeiro-Gomes, K., Hernández-López, D., Ortega, J., Ballesteros, R., Poblete, T. and Moreno, M. Uncooled thermal camera calibration and optimization of the photogrammetry process for UAV applications in agriculture, Sensors, 2017, 17, (10), p 2173. doi: 10.3390/s17102173.CrossRefGoogle ScholarPubMed
Yadav, D., Singh, G., Singh, B.M., Chauhan, H., Gopal, K. and Singh, A.G. Quadcopter for agriculture, Int. Res. J. Eng. Technol., 2018, 05, (05), p 4.Google Scholar
Kurkute, S.R. Drones for smart agriculture: A technical report, Int. J. Res. Appl. Sci. Eng. Technol., 2018, 6, (4), pp 341346. doi: 10.22214/ijraset.2018.4061.CrossRefGoogle Scholar
Huuskonen, J. and Oksanen, T. Soil sampling with drones and augmented reality in precision agriculture, Comput. Electron. Agric., 2018, 154, pp 2535. doi: 10.1016/j.compag.2018.08.039.CrossRefGoogle Scholar
Kim, J., Kim, S., Ju, C. and Son, H.I. Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications, IEEE Access, 7, pp 105100105115, 2019. doi: 10.1109/ACCESS.2019.2932119.CrossRefGoogle Scholar
Daponte, P., De Vito, L., Glielmo, L., Iannelli, L., Liuzza, D., Picariello, F. and Silano, G. A review on the use of drones for precision agriculture, IOP Conference Series: Earth and Environmental Science, vol. 275, 2019, p 012022. doi: 10.1088/1755-1315/275/1/012022.CrossRefGoogle Scholar
Hassler, S.C. and Baysal-Gurel, F. Unmanned Aircraft System (UAS) technology and applications in agriculture, Agronomy, 2019, 9, (10), p 618. doi: 10.3390/agronomy9100618.CrossRefGoogle Scholar
van der Merwe, D., Burchfield, D.R., Witt, T.D., Price, K.P. and Sharda, A. Drones in agriculture, in Advances in Agronomy, vol. 162, Elsevier, 2020, pp 130. doi: 10.1016/bs.Agron.2020.03.001.Google Scholar
Xu, B., Wang, W., Falzon, G., Kwan, P., Guo, L., Chen, G., Tait, A. and Schneider, D. Automated cattle counting using Mask R-CNN in quadcopter vision system, Comput. Electron. Agric., 2020, 171, p 105300. doi: 10.1016/j.compag.2020.105300.CrossRefGoogle Scholar
Mahajan, U. and Bundel, B.R. Drones for Normalized Difference Vegetation Index (NDVI), to estimate crop health for precision agriculture: A cheaper alternative for spatial satellite sensors, Food Sci., 22, p 4, 2016.Google Scholar
Patel, P.N., Patel, M.A., Faldu, R.M. and Dave, Y.R. Quadcopter for agricultural surveillance, in Advanced Electronic and Electrical Engineering, 2013, p 6.Google Scholar
Anderson, K. and Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology, Front. Ecol. Environ., 2013, 11, (3), pp 138146. doi: 10.1890/120150.CrossRefGoogle Scholar
Jones, G.P., Pearlstine, L.G. and Percival, H.F. An assessment of small unmanned aerial vehicles for wildlife research, Wildl. Soc. Bull., 2006, 34, (3), pp 750758. doi: 10.2193/0091-7648(2006)34[750:AAOSUA]2.0.CO;2.CrossRefGoogle Scholar
Hunt, E.R., Hively, W.D., Fujikawa, S., Linden, D., Daughtry, C.S. and McCarty, G. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring, Remote Sens., 2010, 2, (1), pp 290305. doi: 10.3390/rs2010290.Google Scholar
Gonzalez, L.F., Montes, G.A., Puig, E., Johnson, S., Mengersen, K. and Gaston, K.J. Unmanned Aerial Vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation, Sensors, 2016, 16, (1), p 97.Google Scholar
Mulero-P, M. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review, p 14, 2017. https://doi.org/10.1371/journal.pone.0178448.CrossRefGoogle Scholar
Hardin, P.J. and Jensen, R.R. Small-scale unmanned aerial vehicles in environmental remote sensing: Challenges and opportunities, GIScience Remote Sens., 2011, 48, (1), pp 99111. doi: 10.2747/1548-1603.48.1.99.CrossRefGoogle Scholar
Vas, E., Lescroel, A., Duriez, O., Boguszewski, G. and Gremillet, D. Approaching birds with drones: First experiments and ethical guidelines, Biol. Lett., 2015, 11, (2), p 20140754.CrossRefGoogle Scholar
Casbeer, D.W., Li, S.-M., Beard, R.W., Mehra, R.K. and McLain, T.W. Forest fire monitoring with multiple small UAVs, Proceedings of the 2005, American Control Conference, 2005, Portland, OR, USA, 2005, pp 35303535. doi: 10.1109/ACC.2005.1470520.Google Scholar
Kalyanam, K., Chandler, P., Pachter, M. and Darbha, S. Optimization of perimeter patrol operations using unmanned aerial vehicles, J. Guid. Control Dyn., 2012, 35, (2), pp 434–441.Google Scholar
Watts, A.C., et al. Small unmanned aircraft systems for low-altitude aerial surveys, J. Wildl. Manag., 2010, 74, (7), pp 16141619. doi: 10.1111/j.1937-2817.2010.tb01292.x.CrossRefGoogle Scholar
Hodgson, J.C. Precision wildlife monitoring using unmanned aerial vehicles, Sci. Rep., 2016, 6, p 7.Google Scholar
Radiansyah, S., Kusrini, M.D. and Prasetyo, L.B. Quadcopter applications for wildlife monitoring, IOP Conference Series: Earth and Environmental Science, Vol. 54, No. 1, p. 012066, IOP Publishing, 2017.Google Scholar
Hardin, P.J. and Hardin, T.J. Small-scale remotely piloted vehicles in environmental research, Geography Compass, 2010, 4, (9), pp 12971311. doi: 10.1111/j.1749-8198.2010.00381.x.CrossRefGoogle Scholar
Paneque-Gálvez, J., McCall, M.K., Napoletano, B.M., Wich, S.A. and Koh, L.P. Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas, Forests, 2014, 5, (6), pp 1481–1507.CrossRefGoogle Scholar
Sardà-Palomera, F.R.A.N.C.E.S.C., Bota, G., Viñolo, C., Pallarés, O., Sazatornil, V., Brotons, L., Gomáriz, S. and Sardà, F. Fine-scale bird monitoring from light unmanned aircraft systems. Ibis, 2012, 154, (1), pp 177183. doi: 10.1111/j.1474-919X.2011.01177.x.CrossRefGoogle Scholar
Linchant, J. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges, Mammal Rev., 2015, 45, (4), pp 239–252.Google Scholar
Ferreira, S.M. and van Aarde, R.J. Aerial survey intensity as a determinant of estimates of African elephant population sizes and trends,” South Afr. J. Wildl. Res., 2009, 39, (2), pp 181191. doi: 10.3957/056.039.0205.CrossRefGoogle Scholar
Kingsford, R.T. Aerial survey of waterbirds on wetlands as a measure of river and floodplain health: Aerial survey of waterbirds and river health, Freshw. Biol., 1999, 41, (2), pp 425438. doi: 10.1046/j.1365-2427.1999.00440.x.CrossRefGoogle Scholar
Wallace, L., Lucieer, A., Turner, D. and Watson, C. Error assessment and mitigation for hyper-temporal UAV-borne LiDAR surveys of forest inventory, Proceedings of Silvilaser, pp 1–13, 2011.Google Scholar
Rodgers, J.A., Linda, S.B. and Nesbitt, S.A. Comparing aerial estimates with ground counts of nests in wood stork colonies, J. Wildl. Manag., 1995, 59, (4), p 656. doi: 10.2307/3801941.CrossRefGoogle Scholar
Getzin, S., Wiegand, K. and Schöning, I. Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles: Assessing biodiversity in forests, Methods Ecol. Evol., 2012, 3, (2), pp 397404. doi: 10.1111/j.2041-210X.2011.00158.x.CrossRefGoogle Scholar
Le Maho, Y., Whittington, J.D., Hanuise, N., Pereira, L., Boureau, M., Brucker, M., Chatelain, N., Courtecuisse, J., Crenner, F., Friess, B. and Grosbellet, E. Rovers minimize human disturbance in research on wild animals, Nat. Methods, 2014, 11, (12), pp 12421244. doi: 10.1038/nmeth.3173.CrossRefGoogle ScholarPubMed
Hernandez, A., Murcia, H., Copot, C. and Keyser, R.D. Towards the development of a smart flying sensor: Illustration in the field of precision agriculture, Sens., 2015, 15, (7), pp 16688--16709.Google Scholar
Rodríguez, A., Negro, J.J., Mulero, M., Rodríguez, C., Hernández-Pliego, J. and Bustamante, J. The eye in the sky: Combined use of unmanned aerial systems and GPS data loggers for ecological research and conservation of small birds, PLoS ONE, 2012, 7, (12), p e50336. doi: 10.1371/journal.pone.0050336.CrossRefGoogle ScholarPubMed
Girard, A.R., Howell, A.S. and Hedrick, J.K. Border patrol and surveillance missions using multiple unmanned air vehicles, 43rd IEEE conference on decision and control (CDC) (IEEE Cat. No. 04CH37601), vol. 1, pp 620–625, IEEE, 2004.CrossRefGoogle Scholar
Bein, D., Bein, W., Karki, A. and Madan, B.B. Optimizing border patrol operations using unmanned aerial vehicles, 2015 12th International Conference on Information Technology-New Generations, pp 479–484, IEEE, 2015.Google Scholar
Strategies_of_Path-Planning_for_a_UAV_to_Track_a_G.pdf.Google Scholar
Kim, H.J. and Shim, D.H. A flight control system for aerial robots: Algorithms and experiments, Control Eng. Pract., 2003, 11, (12), pp 1389–1400.Google Scholar
Blazakis, J. Border security and unmanned aerial vehicles, Connect., 2006, 5, (2), pp 154–159.CrossRefGoogle Scholar
Beard, R.W., McLain, T.W., Nelson, D.B., Kingston, D. and Johanson, D. Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs, Proc. IEEE, 2006, 94, (7), pp 1306–1324.Google Scholar
Haddal, C.C. and Gertler, J. Homeland security: Unmanned aerial vehicles and border surveillance, Library of Congress Washington DC Congressional Research Service, 2010.Google Scholar
Greenwood, F., Nelson, E.L. and Greenough, P.G. Flying into the hurricane: A case study of UAV use in damage assessment during the 2017 hurricanes in Texas and Florida, PLoS one, 2020, 15, (2), p e0227808.CrossRefGoogle Scholar
Valdovinos, M., Specht, J. and Zeunik, J. Law enforcement & Unmanned Aircraft Systems (UAS): Guidelines to enhance community trust. Washington, DC: Office of Community Oriented Policing Services, 2016.Google Scholar
González-Jorge, H., Martínez-Sánchez, J., Bueno, M. and Arias, P. Unmanned aerial systems for civil applications: A review, Drones, 1, (1), pp 119, 2017. doi: 10.3390/drones1010002.CrossRefGoogle Scholar
Xu, C. Assessment of human and multiple UAVs interactions in police clearing operations, Doctoral dissertation, Iowa State University, 2020.Google Scholar
Milner, M.N., Rice, S., Winter, S.R. and Anania, E.C. The effect of political affiliation on support for police drone monitoring in the United States, J. Unmanned Veh. Syst., 2019, 7, (2), pp 129–144.Google Scholar
Stolaroff, J.K., Samaras, C., O’Neill, E.R., Lubers, A., Mitchell, A.S. and Ceperley, D. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery, Nat. Commun., 2018, 9, (1), pp 113. doi: 10.1038/s41467-017-02411-5.Google ScholarPubMed
Govindarajan, B. and Sridharan, A. Conceptual sizing of vertical lift package delivery platforms, J. Aircr., 2020, 57, (6), pp 11701188. doi: 10.2514/1.C035805.Google Scholar
Mac, T.T., Copot, C., De Keyser, R. and Ionescu, C.M. The development of an autonomous navigation system with optimal control of a UAV in a partly unknown indoor environment, Mechatron., 2018, 49, pp 187–196.Google Scholar
Schnieders, T.M., Wang, Z., Stone, R.T., Backous, G. and Danford-Klein, E. The effect of human-robot interaction on trust, situational awareness, and performance in drone clearing operations, Int. J. Hum. Factors Ergon., 2019, 6, (2), pp 103--123.Google Scholar
Bauer, A., Anderson, M.L., DePaola, R., Chimento, C., Gwaltney, C., Taylor, N. and Teope, K. Methods for deploying payloads from multi-rotor unmanned aerial systems, AIAA SciTech 2019 Forum, 2019, p 1285. doi: 10.2514/6.2019-1285.Google Scholar
Sung, I. and Nielsen, P. Zoning a service area of unmanned aerial vehicles for package delivery services, J. Intell. Robot. Syst. Theory Appl., 2020, 97, (3–4), pp 719731. doi: 10.1007/s10846-019-01045-7.Google Scholar
Guo, D. and Leang, K.K. Image-based estimation, planning, and control of a cable-suspended payload for package delivery, IEEE Robot. Autom. Lett., 2020, 5, (2), pp 26982705. doi: 10.1109/LRA.2020.2972855.Google Scholar
Vempati, L., Crapanzano, R., Woodyard, C. and Trunkhill, C. Linear program and simulation model for aerial package delivery: A case study of Amazon prime air in Phoenix, AZ, 17th AIAA Aviation Technology, Integration, and Operations Conference, 2017. doi: 10.2514/6.2017-3936.Google Scholar
Das, D.N., Sewani, R., Wang, J. and Tiwari, M.K. Synchronized truck and drone routing in package delivery logistics, IEEE Trans. Intell. Transp. Syst., 2020, pp 111. doi: 10.1109/tits.2020.2992549.Google Scholar
Ali, A., Ballou, N., McDougall, B. and Valle, J.L. Decision Support Tool for Designing Niche Small Package Delivery Aerial Vehicles, 2015.Google Scholar
Junaid, A., Konoiko, A., Zweiri, Y., Sahinkaya, M. and Seneviratne, L. Autonomous wireless self-charging for multi-rotor unmanned aerial vehicles, Energies, 2017, 10, (6), p 803. doi: 10.3390/en10060803.Google Scholar
Mehndiratta, M., Kayacan, E. and Kayacan, E. A simple learning strategy for feedback linearization control of aerial package delivery robot, 2018 IEEE Conference on Control Technology and Applications (CCTA), 2018, pp 361367. doi: 10.1109/CCTA.2018.8511485.Google Scholar
Yoon, S., Lee, H.C. and Pulliam, T.H. Computational analysis of multi-rotor flows, 54th AIAA aerospace sciences meeting, p 0812, 2016.Google Scholar
Young, L.A. A multi-modality mobility concept for a small package delivery UAV, 7th AHS Technical Meeting on VTOL Unmanned Aircraft Systems and Autonomy, 2017.Google Scholar
Mehndiratta, M. and Kayacan, E. A constrained instantaneous learning approach for aerial package delivery robots: Onboard implementation and experimental results, Auton. Robots, 2019, 43, (8), pp 22092228. doi: 10.1007/s10514-019-09875-y.Google Scholar
Introduction, I. Future demand and benefits for small - autonomous, pp 17, 2017. doi: 10.2514/6.2017-4103.CrossRefGoogle Scholar
Ali, A., Ballou, N., McDougall, B. and Valle Ramos, J.L. Decision-support tool for designing small package delivery aerial vehicles (DST-SPDAV), 2015 Systems and Information Engineering Design Symposium, Apr. 2015, pp 4550. doi: 10.1109/SIEDS.2015.7117009.Google Scholar
Jackson, S.W., Riccoboni, N.A., Rahim, A.H.A., Tobin, R.V., Bluman, J.E., Kopeikin, A.N., Manjunath, P. and Prosser, E.M. Autonomous airborne multi-rotor UAS delivery system, 2020 International Conference on Unmanned Aircraft Systems ICUAS 2020, IEEE, pp 702708, 2020. doi: 10.1109/ICUAS48674.2020.9214011.CrossRefGoogle Scholar