No CrossRef data available.
Published online by Cambridge University Press: 08 April 2025
In response to the requirements for assessing the impact safety of aero-engines, a high-fidelity numerical simulation method based on overset mesh technology for six-degree-of-freedom rigid body motion is proposed. A gas-solid two-phase flow model is established, coupling two types of ice-debris (externally ingested ice and internally delaminated ice) with air, to analyse their behaviour in a dorsal S-shaped inlet with a diffusion ratio of 1.3. Results indicate that the ice-debris entering from the upper region of the entrance section exerts the most significant distortion on the total-pressure at the engine inlet. Additionally, the behaviour of ice-debris is determined by its angle with respect to the incoming flow direction and the shape of ice. Furthermore, although the ice-debris detached from the entrance section poses no immediate threat to the engine, the prolonged acceleration by high-speed airflow, with velocity increments exceeding 45 m/s, results in a higher kinetic energy carried upon impact with the inlet walls. Regarding externally ingested ice-debris, a smaller initial velocity corresponds to a higher probability of impacting the engine, accompanied by a significant increase in velocity. For instance, the irregular ice-debris ingested at an initial velocity of 6 m/s can experience velocity amplification exceeding 590%.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.