No CrossRef data available.
Published online by Cambridge University Press: 04 July 2016
The rectilinear flow of an incompressible viscous fluid along a duct of uniform cross section due to an oscillating pressure gradient has been considered by a number of investigators. The duct of circular cross .section has been treated by Richardson and Tyler and Sexl, the elliptic case by Khamrui, and the rectangular case by Drake and Fan and Chao. Recently Jeng has discussed the importance of this type of flow and has given a procedure for calculating a numerical solution for a duct of arbitrary cross-section. An interesting feature of these flows is that, at large frequencies when the flow is of boundary-layer type, the velocity at any instant has its maximum near the walls, the velocity overshooting its almost uniform distribution at the centre of the duct.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.