Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T00:38:36.935Z Has data issue: false hasContentIssue false

Total Reflection Xrf of Light Elements Using Various Excitation Sources

Published online by Cambridge University Press:  06 March 2019

Christina Streli
Affiliation:
Atominstitut der Österreichischen Universitäten Schüttelstraβe 115, A-1020 Wien, Austria
P. Wobrauschek
Affiliation:
Atominstitut der Österreichischen Universitäten Schüttelstraβe 115, A-1020 Wien, Austria
H. Aiginger
Affiliation:
Atominstitut der Österreichischen Universitäten Schüttelstraβe 115, A-1020 Wien, Austria
W. Ladisich
Affiliation:
Atominstitut der Österreichischen Universitäten Schüttelstraβe 115, A-1020 Wien, Austria
R. Rieder
Affiliation:
Atominstitut der Österreichischen Universitäten Schüttelstraβe 115, A-1020 Wien, Austria
Get access

Abstract

Total Reflection X-Ray Fluorescence Analysis (TXRF) has been proved to be well suited for the energy dispersive analysis of light elements using a special spectrometer, which is equipped with an energy dispersive detector having all properties for the detection of low energy radiation. The detection of the light elements is strongly influenced by the excitation source which should provide a large number of photons with energies near the K-absorption edge of these elements (0.2 - 3 keV). Various standard tubes with Be-window as well as a homemade windowless tube are compared, all differing in focal size, total power and anode material. Optimized excitation conditions are provided by synchrotron radiation meeting all requirements for excellent excitation of light elements in total reflection geometry such as high brilliance and ideal spectral distribution specially in the low energy region. A comparison of excitation with X-ray tubes as well as with synchrotron radiation is shown. Detection limits of 200 fg for Mg have been obtained with synchrotron radiation.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. C., Streli, P., Wobrauschek, H., Aiginger, Spectrochim. Acta 44B, 491 (1989)Google Scholar
2. C., Streli, P., Wobrauschek, H., Aiginger, Spectrochim. Acta 46B, 1351 (1991)Google Scholar
3. C., Streli, H., Aiginger, P., Wobrauschek, Spectrochim. Acta 48B, 163 (1993)Google Scholar
4. Y., Yoneda, Horiuchi, T., Rev.Sci.Inst. 42, 1069, (1971)Google Scholar
5. H., Aiginger, P., Wobrauschek, Nucl.Instr.Meth. 114, 157, (1974)Google Scholar
6. Klockenkämper, R., Spectroscopy 5, 26, (1990)Google Scholar
7. P., Wobrauschek, P., Kregsamer, C., Streli, H., Aiginger Adv. X-Ray Anal. 34, 1, (1991)Google Scholar
8. C., Streli, P., Wobrauschek, H., Aiginger, Nucl Instr. Meth. A 334, 425, (1993)Google Scholar
9.TRACOR technical information (1989)Google Scholar
10. P., Wobrauschek, P., Kregsamer, C., Streli, H., Aiginger X-ray Spectrum. 20, 23, (1991)Google Scholar
11. A., Lida,Y.Gohshi, Adv. X-ray Anal. 29, 427, (1986)Google Scholar
12. L., Pan, King, P.L., P., Pianetta, D., Seligson, Barbee, T.W. Nucl. Instr. Meth. A266, 287, (1988)Google Scholar
13. van Espen, P., Nullens, H., Adams, F., Nucl. Instr. Meth. 142,243(1977)Google Scholar