Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T00:46:53.350Z Has data issue: false hasContentIssue false

Analysis of the Average Poly-Cyclic Aromatic Unit in a Metaanthracite Coal Using Conventional X-Ray Powder Diffraction and Intensity Separation Methods

Published online by Cambridge University Press:  06 March 2019

David L. Wertz
Affiliation:
Department of Chemistry & Biochemistry University of Southern Mississippi Hattiesburg, MS 39406-5043 USA
Margaret Bissell
Affiliation:
Department of Chemistry & Biochemistry University of Southern Mississippi Hattiesburg, MS 39406-5043 USA
Get access

Extract

X-ray characterizations of coals and coal products have occurred for many years. Hirsch and Cartz measured the diffraction from several coals over the reciprocal space region from s = 0.12 Å-1 to 7.5 Å-1 where s = (4πλ) sine). In these studies, a 9 cm powder camera was used to study the high angle region, and a transmission type focussing camera equipped with a LiF monochromator was used for the low angle measurements. They reported that the height of the graphene peak (ca. 3.5 Å) measured for each coal is proportional to the % carbon in the coals. Hirsch also suggested that the ontyberem anthracite (94.1% carbon, 3.0% hydrogen, and 5.3% volatile matter with a specific gravity of 1.46) has a lamellar diameter of ca. 16 Å corresponding to an aromatic lamellae of ca. C87. For coals with lower carbon content, Hirsch proposed much smaller lamellae; C19 for a coal with 80% carbon, and C24 for a coal with 89% carbon.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cartz, L. and Hirsch, P. B., Phil. Trans., 1960 (A-252) 68; Nature, 1956 (177) 500.Google Scholar
2. Hirsch, P. B., Proc. Royal Soc. London, 1954 (A-226) 143.Google Scholar
3. Franklin, R. E., Acta Crystallogr., 1950 (3) 10.Google Scholar
4. Kwan, J. T. and Chen, T. F., Proc. Div. Fuel Sci., 1976 (21) 67.Google Scholar
5. Diamond, R., Acta Crystallogr., 1958 (11) 129.Google Scholar
6. Wertz, D. L., Powder Diff., 1988 (3) 153; 1990 (5) 44.Google Scholar
7. Wertz, D. L., Smithhart, C. B., and Wertz, S. L., Adv. X-Ray Anal., 1990 (33) 475.Google Scholar
8. Davis, B. L., Powder Diff., 1986 (1) 244.Google Scholar
9. McCarthy, G. J., Powder Diff., 1986 (1) 50.Google Scholar
10. Wertz, D. L., Energy Fuels, 1990 (4) 442.Google Scholar
11. Skehan, J. W., Rast, N., and Mosher, S., “Paleonenvironmental and Tectonic Controls of Sedimentation in Coal-Forming Basins of Southeastern New England”, Geological Society of America, Special Paper 210,1986; J. W. Skehan and N. Rast, “Pre-Mesozoic Evolution of Avalon Terranes of Southern New England”, Geological Society of America, Special Paper 245, 1990.Google Scholar
12. Wertz, D. L., D. L., Am. Chem. Soc., Div. Fuel. Sci., 1992 (37) 1193.Google Scholar
13. Wertz, D. L., D. L. and Kruh, R. F., J, Chem. Phys., 1967 (47) 388.Google Scholar
14. Levy, H. A., Danford, M. D., and Narten, A. H., ORNL Report No. 3960, 1966.Google Scholar
15. Harris, R. W. and Clayton, G. T., J. Chem. Phys., 1966 (45) 2681.Google Scholar
16. Ohtaki, H. and Wada, H., J. Solution Chem., 1985 (14) 3.Google Scholar
17. Lovell, R., Mitchell, G. R., and Windle, A. H., Acta Crystallogr., 1979 (A35) 598.Google Scholar
18. Johansson, G. and Wakita, H., Inorg. Chem., 1985 (24) 3047.Google Scholar
19. Yamaguchi, T. S., Hayashi, T., and Ohtaki, H., Inorg. Chem., 1989 (28) 2434.Google Scholar
20. Bell, J. R., Tyvoll, J. L., and Wertz, D. L., J. Am. Chem. Soc, 1973 (95) 1456.Google Scholar
21. Wertz, D. L. and Hicks, G. T., Phys. Chem., 1980 (84) 521.Google Scholar
22. Wertz, D. L. and Holder, A. J., J. Phys. Chem., 1987 (91) 3479.Google Scholar
23. Wertz, D. L. and Cook, G. A., J. Solution Chem., 1985 (14) 41.Google Scholar
24. Kruh, R. F., Chem. Rev., 1962 (62) 319.Google Scholar
25. Hajdu, F., Acta Crystallogr., 1971 (A27) 73; 1972 (A28) 250; G. Palinkos, private communications, 1980.Google Scholar
26. Konnert, J. H. and Karle, J., Acta Crystallogr., 1973 (A29).Google Scholar
27. Cruickshank, D. W. J., Acta Crystallogr., 1959 (12) 208.Google Scholar
28. Abrahams, S. C., Robertson, J. M., and White, J. G., Acta Crystallogr., 1949 (2) 233.Google Scholar
29. Cruickshank, D, W. J., Acta Crystallogr., 1957 (10) 504.Google Scholar
30. Ahmed, F. R. and Cruickshank, D. W. J., Acta Crystallogr., 1952 (5) 852.Google Scholar
31. Cruickshank, D. W. J., 1956 (9) 915.Google Scholar
32. Robertson, J. M. and White, J. G., J. Chem. Soc, 1947, 358.Google Scholar
33. Robertson, J. M. and White, J. G., Nature, 1944 (154) 605; J. Chem. Soc, 1945, 607.Google Scholar
34. Robertson, J. M. and Shearer, H. M. M., Nature, 1956 (177) 885.Google Scholar
35. Robertson, J. M., J. Chem. Phys., 1950 (47) 41.Google Scholar
36. Fawcett, J. K. and Trotter, J., Proc Royal Acad., 1965 (A289) 366.Google Scholar
37. Solum, M. S., Pugmire, R. J., and Grant, D. M., Energy Fuels, 1989 (3) 187.Google Scholar
38. Sethi, N. K., Pugmire, R. J., Facelli, J. C., and Grant, D. M., Anal. Chem., 1988 (60) 1574.Google Scholar