Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T00:42:29.875Z Has data issue: false hasContentIssue false

The Use of PCs for AB Initio Structure Determination From Powder Diffraction Data

Published online by Cambridge University Press:  06 March 2019

Michèle Louër
Affiliation:
Laboratoire de Cristallochimie (URA CNRS 1495), Université de Rennes Avenue du Général Leclerc, 35042 Rennes cedex, France
Daniel Louër
Affiliation:
Laboratoire de Cristallochimie (URA CNRS 1495), Université de Rennes Avenue du Général Leclerc, 35042 Rennes cedex, France
Get access

Extract

The determination ab initio of crystal structures from powder diffraction data has been the most striking advance of modern powder crystallography. It is a consequence of the major developments occurred in instrument resolution, powder pattern indexing and Fitting techniques, e.g. the problem of peak overlap resulting from the collapse of the three dimensional pattern into one dimensional powder diffraction data has been circumvented by the advent of the Rietveld method. A structure analysis starting from scratch involves successive stages from the collection of high quality powder diffraction data to the refinement of the atomic coordinates by the Rietveld method. Since the pioneering work by Werner and co-workers a number of crystal structures solved from powder diffraction data, collected with synchrotron and conventional sources have been reported. With the growing development of this important application of the powder method, integrated softwares for solving crystal structures are now of interest, and a number of programs are available for the analysis of the different stages of a structural study. These programs combine computer routines for the treatment of powder diffraction data and routines used in conventional structure determination from single crystal data. Most of these programs have been listed in the Powder Diffraction Program Information 1990 Program List. Owing to the efficiency of modern personal computers, solving a crystal structure ab initio from powder diffraction data can now be carried out with a desk computer.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cheetham, A.K., Chapter 15, in: “The Rietveld Method”, Young, R.A., ed., Oxford Univ. Press (1993).Google Scholar
2. J.-E., Berg and P.-E., Werner, Z Kristallogr. 145:310 (1977).Google Scholar
3. Attfield, J.P., A.W. Sleight and Cheetham, A.K., Nature 322:620 (1986).Google Scholar
4. McCusker, L.B., J. Appl. Cryst. 21:305 (1988).Google Scholar
5. Louër, D. and Louër, M., J. Solid State Chem. 68:292 (1987).Google Scholar
6. Louër, D., Louër, M. and Toubowl, M., J. Appl. Cryst. 25:617 (1992).Google Scholar
7. Bénard, P., Louër, M. and Louër, D., J. Solid State Chem. 94:27(1991).Google Scholar
8. McCusker, L.B., in: “Accuracy in Powder Diffraction II”, E. Prince & Stalick, J.K., ed., NIST Spec. Publ. 846, pp. 7579 (1992).Google Scholar
9. Smith, D.K. and S., Gorter, J. Appl. Cryst. 24:369 (1991).Google Scholar
10. International Centre for Diffraction Data, PDF database, Newtown Square, PA (U.S.).Google Scholar
11. R., Delhez, T.H. de, Keijser, Langford, J.I., D., Louër, Mittemeijer, E.J. and EJ., Sonneveld, Chapter 8, in:The Rietveld Method”, Young, R.A., ed., Oxford Univ. Press (1993).Google Scholar
12. Louër, D., Mater. Set. Forum 7982:17 (1991).Google Scholar
13. Louër, D., in “Accuracy in Powder Diffraction”, Prince, E. & Stalick, J.K., ed., NIST Spec. Publ. 846, pp. 92104 (1992).Google Scholar
14. International Centre for Diffraction Data, NIST CDF database, Newtown Square, PA (U.S.).Google Scholar
15. A., Le Bail, H., Duroy and Fourquet, J.L., Mater, lies. Bull. 23:447 (1988).Google Scholar
16. A., Boultif and D., Louër, J. Appl. Cryst. 24:987 (1991).Google Scholar
17. P.-E., Werner, L., Eriksson and M., Westdahl, J. Appl. Cryst. 18:367(1985).Google Scholar
18. Visser, J.W., J. Appl. Cryst. 2:89 (1969).Google Scholar
19. Mighell, A.D., Hubbard, C.R. and Stalick, J.K.. NBS*AIDS80: a Fortran Program/or Crystallographic Data Evaluation. Natl Bur. Stand. (U.S.). Tech, Note No. 1141. [NBS*AIDS83 is an expanded version of NBS*AIDS80.]Google Scholar
20. P.-E., Werner, Arkiv för Kemi 31:513 (1969).Google Scholar
21. J., Rodriguez-Carvajal, in:Collected Abstract of Powder Diffraction Meeting” (Toulouse, France), p. 127 (1990).Google Scholar
22. Sheldrick, G.M., in:Crystallographic Computing 3”, G.M, Sheldrick, C., Kriiger & R., Goddard, ed., Oxford Univ. Press, pp. 175189 (1985).Google Scholar
23. E., Egert and Sheldrick, G.M., Acta Cryst. A41:262 (1985).Google Scholar
24. G., Cascarano, L., Favia and C., Giacovazzo, J. Appl. Cryst. 25:310 (1992).Google Scholar
25. Wiles, D.B. and Young, R.A., J. Appl. Cryst. 14:149 (1981).Google Scholar
26. Hill, R.J. and L.M.D., Cranswick, J. Appl. Cryst., in press (1993).Google Scholar
27. S., Petit, G., Coquerel, G., Perez, D., Louër and M., Louër, Chem. Mater., in press (1993).Google Scholar