Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T19:41:06.078Z Has data issue: false hasContentIssue false

Documenting Archaeological Sites on Mountains and Slopes with Drones

Published online by Cambridge University Press:  21 October 2019

Luis Jaime Castillo*
Affiliation:
San José de Moro Archaeological Program, Facultad de Letras y Ciencias Humanas, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, Peru
Fabrizio Serván
Affiliation:
San José de Moro Archaeological Program, Facultad de Letras y Ciencias Humanas, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, Peru
Karla Patroni
Affiliation:
San José de Moro Archaeological Program, Facultad de Letras y Ciencias Humanas, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima, Peru
*
(corresponding author, lcastil@pucp.edu.pe)

Abstract

The addition of drones to the archaeologist's toolbox has brought about exciting new possibilities, particularly for field research and the conservation and protection of our built heritage. As drones become more widely available and effective, the challenge of precision becomes more important. Better georeferencing and higher-resolution outputs are the current thresholds. In order to achieve the second objective with our current equipment, drones have to fly closer to the ground and, ideally, follow the elevation of the surface. This task can be extremely complicated along the steep surfaces and mountains typical to the Andean region where we work. In this article, we present a recording (flying and photographing) methodology that achieves a higher ground resolution by dividing up the sites into several altitudinal sections, which are flown independently yet processed photogrammetrically as a single set. We have named this methodology “Flying Slopes in Multiple Stepped Polygons.”

La inclusión de drones en el equipamiento científico ha traído nuevas posibilidades para casi todos los campos de investigación. Esto ha sido particularmente cierto para los estudios arqueológicos de campo y para la conservación y protección del patrimonio construido. A medida que los drones se hacen más accesibles y efectivos, el reto de la precisión se hace más importante. Mejor georreferenciación y productos de mayor resolución son el reto actual. Para obtener el segundo objetivo con el equipo disponible, los drones tienen que volar más cerca de la superficie, e idealmente, deben seguir las elevaciones del terreno. Esta tarea puede ser extremadamente difícil en terrenos con pendientes y en montañas, típicas de la región andina donde trabajamos. En este artículo presentamos una metodología de registro (para volar y fotografiar) que consigue una mayor resolución del terreno dividiendo los sitios en varis secciones altitudinales, que se vuelan independientemente, pero que se procesan en programas de fotogrametría como un solo conjunto. Hemos nombrado a esta metodología “Vuelo en Pendiente en Múltiples Polígonos Escalonados”.

Type
Articles
Copyright
Copyright 2019 © Society for American Archaeology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES CITED

Boyle, Michael J. 2015 The Race for Drones. Orbis 59:7694.Google Scholar
Brooks, Michael 2012 Welcome to the Personal Drone Revolution. New Scientist 216(8):4245.Google Scholar
Campana, Stefano 2017 Drones in Archaeology: State-of-the-Art and Future Perspectives. Archaeological Prospection 24:275296. DOI:10.1002/arp.1569.Google Scholar
Castillo, Luis Jaime 2010 La Arqueología del valle de Jequetepeque. In Programa Arqueológico San José de Moro, Temporada 2010, edited by Castillo, Luis Jaime, pp. 944. Pontificia Universidad Católica del Perú, Lima.Google Scholar
Castillo, Luis Jaime 2014 Arqueología desde el Aire. Gaceta Cultura del Peru 46:27.Google Scholar
Castillo, Luis Jaime 2018 Drones y Arqueología: Vuelos e imágenes. In Arqueometría: Estudios analíticos de materiales arqueológicos, edited by Chapoulie, Rémy, Sepúlveda, Marcela, Del Solar Velarde, Nino, and Wright, Véronique, pp. 629662. Instituto Francés de Estudios Andinos, Lima.Google Scholar
Colomina, P. Molina 2014 Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS Journal of Photogrammetry and Remote Sensing 92:7997.Google Scholar
Comer, Douglas C., and Harrower, Michael J. (editors) 2013 Mapping Archaeological Landscapes from Space. Springer, New York.Google Scholar
Floreano, Dario, and Wood, Robert J. 2015 Science, Technology and the Future of Small Autonomous Drones. Nature 521(7553):460.Google Scholar
Gutiérrez, Gerardo, Erny, Grace, Friedman, Alyssa, Godsey, Melanie, and Gradoz, Machal 2016 Archaeological Topography with Small Unmanned Aerial Vehicles. SAA Archaeological Record 2(16):1013.Google Scholar
Harrison-Buck, Eleanor, Willis, Mark, and Walker, Chester 2016 Using Drones in a Threatened Archaeological Landscape, Rapid Survey, Salvage, and Mapping of the Maya Site of Saturday Creek, Belize. SAA Archaeological Record 2(16):3035.Google Scholar
Hecker, Gisela, and Hecker, Wolgang 1990 Ruinas, caminos y sistemas de irrigación prehispánicos en la provincia de Pacasmayo, Perú. Serie Patrimonio Arqueológico Zona Norte 3. Instituto Departamental de Cultura–La Libertad, Trujillo, Peru.Google Scholar
Mascort-Albea, Emilio J., Ruiz, Jonathan, and Romero-Hernández, Rocío 2014 Analyzing Cultural Heritage by Unmanned Flights: New Strategies Researching Rural and Urban Spaces. Virtual Archaeology Review 5(11):5564.Google Scholar
Mauricio, Ana Cecilia 2004 Excavaciones en el sitio arqueológico de Portachuelo de Charcape. In Programa Arqueológico San José de Moro, Temporada 2003, edited by Castillo, Luis Jaime, pp. 97108. Pontificia Universidad Católica del Perú, Lima.Google Scholar
McNeal, Gregory S. 2016 Drones and the Future of Aerial Surveillance. George Washington Law Review 84. Electronic document, https://ssrn.com/abstract=2498116, accessed October 4, 2019.Google Scholar
Parcak, Sarah 2009 Satellite Remote Sensing for Archaeology. Routledge, New York.Google Scholar
Parcero-Oubiña, César, Mañana-Borrazás, Patricia, Güimil-Fariña, Alejandro, Fábrega-Álvarez, Pastor, Pino, Mariela, and Borie, César 2016 Mapping on a Budget: A Low-Cost UAV Approach for the Documentation of Prehispanic Fields in Atacama (N. Chile). SAA Archaeological Record 2(16):1721.Google Scholar
Siebert, Sebastian, and Teizer, Jochen 2014 Mobile 3D Mapping for Surveying Earthwork Projects Using an Unmanned Aerial Vehicle (UAV) System. Automation in Construction 41:114.Google Scholar
Swenson, Edward R. 2004 Ritual and Power in the Urban Hinterland: Religious Pluralism and Political Decentralization in Late Moche Jequetepeque, Peru. PhD dissertation, Department of Anthropology, University of Chicago.Google Scholar
Wechsler, Suzanne, Lipo, Carl, Lee, Chris, and Hunt, Terry L. 2016 Technology in the Skies: Benefits of Commercial UAs for Archaeological Applications. SAA Archaeological Record 2(16):3642.Google Scholar
Wiseman, James R., and El-Baz, Farouk (editors) 2007 Remote Sensing in Archaeology. Springer, New York.Google Scholar
Yates, Donna 2018 Crowdsourcing Antiquities Crime Fighting: A Review of GlobalXplorer. Advances in Archaeological Practice 6:173178.Google Scholar