Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T00:09:31.293Z Has data issue: false hasContentIssue false

Weighted faces of Poisson hyperplane tessellations

Published online by Cambridge University Press:  01 July 2016

Rolf Schneider*
Affiliation:
Albert-Ludwigs-Universität Freiburg
*
Postal address: Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstr. 1, D-79104 Freiburg, Germany. Email address: rolf.schneider@math.uni-freiburg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study lower-dimensional volume-weighted typical faces of a stationary Poisson hyperplane tessellation in d-dimensional Euclidean space. After showing how their distribution can be derived from that of the zero cell, we obtain sharp lower and upper bounds for the expected vertex number of the volume-weighted typical k-face (k=2,…,d). The bounds are respectively attained by parallel mosaics and by isotropic tessellations. We conclude with a remark on expected face numbers and expected intrinsic volumes of the zero cell.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2009 

References

Baumstark, V. and Last, G. (2007). Gamma distributions for stationary Poisson flat processes. Submitted.Google Scholar
Baumstark, V. and Last, G. (2007). Some distributional results for Poisson–Voronoi tessellations. Adv. Appl. Prob. 39, 1640.Google Scholar
Favis, W. (1995). Extremaleigenschaften und Momente für stationäre Poissonsche Hyperebenenmosaike. , Universität Jena.Google Scholar
Favis, W. (1996). Inequalities for stationary Poisson cuboid processes. Math. Nachr. 178, 117127.Google Scholar
Favis, W. and Weiss, V. (1998). Mean values of weighted cells of stationary Poisson hyperplane tessellations of R d . Math. Nachr. 193, 3748.Google Scholar
Matheron, G. (1972). Ensembles fermés aléatoires, ensembles semi-markoviens et polyèdres poissoniens. Adv. Appl. Prob. 4, 508541.Google Scholar
Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York.Google Scholar
Miles, R. E. (1961). Random polytopes: the generalisation to n dimensions of the intervals of a Poisson process. , Cambridge University.Google Scholar
Miles, R. E. (1970). A synopsis of ‘Poisson flats in Euclidean spaces’. Izv. Akad. Nauk Arm. SSR Ser. Mat. 5, 263285.Google Scholar
Nagel, W. (1985). Weighted size distributions for stationary grain models. In Proc. Geobild '85, Wiss. Beiträge der FSU Jena, pp. 118125.Google Scholar
Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin.Google Scholar
Weil, W. (1982). Zonoide und verwandte Klassen konvexer Körper. Monatshefte Math. 94, 7384.Google Scholar
Weiss, V. (1995). Second-order quantities for random tessellations of R d . Stoch. Stoch. Reports 55, 195205.Google Scholar