Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T09:15:29.707Z Has data issue: false hasContentIssue false

Thinning spatial point processes into Poisson processes

Published online by Cambridge University Press:  01 July 2016

Jesper Møller*
Affiliation:
Aalborg University
Frederic Paik Schoenberg*
Affiliation:
University of California
*
Postal address: Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, DK-9220 Aalborg, Denmark.
∗∗ Postal address: Department of Statistics, 8125 Math-Science Building, University of California, Los Angeles, CA 90095-1554, USA. Email address: frederic@stat.ucla.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we describe methods for randomly thinning certain classes of spatial point processes. In the case of a Markov point process, the proposed method involves a dependent thinning of a spatial birth-and-death process, where clans of ancestors associated with the original points are identified, and where we simulate backwards and forwards in order to obtain the thinned process. In the case of a Cox process, a simple independent thinning technique is proposed. In both cases, the thinning results in a Poisson process if and only if the true Papangelou conditional intensity is used, and, thus, can be used as a graphical exploratory tool for inspecting the goodness-of-fit of a spatial point process model. Several examples, including clustered and inhibitive point processes, are considered.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2010 

References

Baddeley, A. J. and Møller, J. (1989). Nearest-neighbour Markov point processes and random sets. Internat. Statist. Rev. 2, 89121.CrossRefGoogle Scholar
Baddeley, A. and Turner, R. (2005). Spatstat: an R package for analyzing spatial point patterns. J. Statist. Software 12, 142.CrossRefGoogle Scholar
Baddeley, A. J. and van Lieshout, M. N. M. (1995). Area-interaction point processes. Ann. Inst. Statist. Math. 47, 601619.CrossRefGoogle Scholar
Baddeley, A. J., Møller, J. and Waagepetersen, R. (2000). Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statist. Neerlandica 54, 329350.CrossRefGoogle Scholar
Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005). Residual analysis for spatial point processes. With discussion and a reply by the authors. J. R. Statist. Soc. B 67, 617666.CrossRefGoogle Scholar
Berthelsen, K. K. and Møller, J. (2002). A primer on perfect simulation for spatial point processes. Bull. Brazilian Math. Soc. 33, 351367.CrossRefGoogle Scholar
Carter, D. S. and Prenter, P. M. (1972). Exponential spaces and counting processes. Z. Wahrscheinlichkeitsth. 21, 119.CrossRefGoogle Scholar
Cox, D. R. (1955). Some statistical models connected with series of events. J. R. Statist. Soc. B 17, 129157.Google Scholar
Cressie, N. A. C. (1993). Statistics for Spatial Data. (Reprint of the 1991 edn.) John Wiley, New York.CrossRefGoogle Scholar
Ferrari, P. A., Fernández, R. and Garcia, N. L. (2002). Perfect simulation for interacting point processes, loss networks and Ising models. Stoch. Process. Appl. 102, 6388.CrossRefGoogle Scholar
Geyer, C. J. (1999). Likelihood inference for spatial point processes. In Stochastic Geometry (Toulouse, 1996; Monogr. Statist. Appl. Prob. 80), eds Barndorff-Nielsen, O. E., Kendall, W. S. and van Lieshout, M. N. M., Chapman and Hall/CRC, Boca Raton, FL, pp. 79140.Google Scholar
Kallenberg, O. (1984). An informal guide to the theory of conditioning in point processes. Internat. Statist. Rev. 52, 151164.CrossRefGoogle Scholar
Kendall, W. S. (1998). Perfect simulation for the area-interaction point process. In Probability Towards 2000 (New York, 1995; Lecture Notes Statist. 128), eds Accardi, L. and Heyde, C. C., Springer, New York, pp. 218234.CrossRefGoogle Scholar
Kendall, W. S. and Møller, J. (2000). Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes. Adv. Appl. Prob. 32, 844865.CrossRefGoogle Scholar
Møller, J. (2003). Shot noise Cox processes. Adv. Appl. Prob. 35, 614640.CrossRefGoogle Scholar
Møller, J. and Waagepetersen, R. P. (2004). Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton, FL.Google Scholar
Møller, J. and Waagepetersen, R. P. (2007). Modern statistics for spatial point processes. With discussion. Scand. J. Statist. 34, 643711.CrossRefGoogle Scholar
Møller, J., Syversveen, A. R. and Waagepetersen, R. P. (1998). Log Gaussian Cox processes. Scand. J. Statist. 25, 451482.CrossRefGoogle Scholar
Preston, C. J. (1977). Spatial birth-and-death processes. Bull. Internat. Statist. Inst. 46, 371391.Google Scholar
Ripley, B. D. (1976). The second-order analysis of stationary point processes. J. Appl. Prob. 13, 255266.CrossRefGoogle Scholar
Ripley, B. D. (1977). Modelling spatial patterns. With discussion. J. R. Statist. Soc. B 39, 172212.Google Scholar
Ripley, B. D. and Kelly, F. P. (1977). Markov point processes. J. London Math. Soc. 15, 188192.Google Scholar
Schoenberg, F. P. (2003). Multidimensional residual analysis of point process models for earthquake occurrences. J. Amer. Statist. Assoc. 98, 789795.CrossRefGoogle Scholar
Schoenberg, F. P. (2005). Comment on ‘Residual analysis for spatial point processes’ by Baddeley, Turner, Møller and Hazelton. J. R. Statist. Soc. B 67, 661.Google Scholar
Schoenberg, F. P. and Zhuang, J. (2008). Residual analysis via thinning for spatial point processes. Submitted to Ann. Instit. Statist. Math. Google Scholar
Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd edn. John Wiley, Chichester.Google Scholar
Thomas, M. (1949). A generalization of Poisson's binomial limit for use in ecology. Biometrika 36, 1825.CrossRefGoogle ScholarPubMed
Van Lieshout, M. N. M. (2000). Markov Point Processes and Their Applications. Imperial College Press, London.CrossRefGoogle Scholar
Veen, A. and Schoenberg, F. P. (2005). Assessing spatial point process models for California earthquakes using weighted K-functions: analysis of California earthquakes. In Case Studies in Spatial Point Process Models, eds Baddeley, A. et al. Springer, New York, pp. 293306.Google Scholar
Widom, B. and Rowlinson, J. S. (1970). A new model for the study of liquid-vapor phase transitions. J. Chemical Physics 52, 16701684.CrossRefGoogle Scholar