Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T23:15:57.176Z Has data issue: false hasContentIssue false

Stochastic models for fatigue damage of materials

Published online by Cambridge University Press:  01 July 2016

K. Sobczyk*
Affiliation:
Polish Academy of Sciences
*
Postal address: Polish Academy of Sciences, Institute of Fundamental Technological Research, Świetokrzyska 21, 00–049 Warsaw, Poland.

Abstract

The paper presents problems, methods and results concerned with the stochastic modelling of fatigue damage of materials. First, the physical and engineering origins of the fatigue phenomenon are briefly outlined. After that, the main existing approaches to random fatigue problems and the models proposed are described in such a way as to show their mathematical structure and usefulness for engineering practice.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 1987 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Antelman, G. and Savage, I. R. (1965) Characteristic functions of stochastic integrals and reliability problems. Naval Res. Logist. Quart. 12, 199–122.Google Scholar
2. Arnold, L. (1974) Stochastic Differential Equations: Theory and Applications. Wiley, New York.Google Scholar
3. Barlow, R. E. and Proschan, F. (1955) Mathematical Theory of Reliability. Wiley, New York.Google Scholar
4. Basawa, I. V. and Prakasa, , Rao, B. L. S. (1980) Asymptotic inference for stochastic processes. Stoch. Proc. Appl. 10, 221254.Google Scholar
5. Bharucha-Reid, A. T. (1960) Markov Processes and their Applications. McGraw-Hill, New York.Google Scholar
6. Birnbaum, Z. W. and Saunders, S. C. (1958) A statistical model for life length of materials. J. Amer. Statist. Assoc. 53, 151160.CrossRefGoogle Scholar
7. Birnbaum, Z. W. and Saunders, S. C. (1969) A new family of life distributions. J. Appl. Prob. 6, 319327.Google Scholar
8. Birnbaum, Z. W. and Saunders, S. C. (1969) Estimation for a family of life distributions with application to fatigue. J. Appl. Prob. 6, 328337.Google Scholar
9. Bogdanoff, J. L. (1978) A new cumulative damage model, Part I. J. Appl. Mech. 45, 245250; Part III. J. Appl. Mech. 45, 733-739.Google Scholar
10. Bogdanoff, J. L. and Krieger, W. (1978) A new cumulative damage model. Part II. J. Appl. Mech. 45, 251257.Google Scholar
11. Bogdanoff, J. L. and Kozin, F. (1980) A new cumulative damage model. Part IV. J. Appl. Mech. 47, 4044.Google Scholar
12. Bolotin, W. W. (1969) Statistical Methods in Structural Mechanics. Holden-Day, San Francisco.Google Scholar
13. Bolotin, W. W. (1971) Some mathematical and experimental models of damage (in Russian). Problems of Strength 2, 1971.Google Scholar
14. Bolotin, W. W. (1980) On safe crack sizes under random loading (in Russian). Izv. Akad. Nauk SSSR-Mekh. Tv. Tela. 1, 1980.Google Scholar
15. Bolotin, W. W. (1980) Lifetime distribution under random loading (in Russian). Zurn. Prikl. Mekh. Tekh. Fiz. No. 5.Google Scholar
16. Bolotin, W. W. (1981) On theory of delayed damage (in Russian). Izv. Akad. Nauk SRR-Mekh. Tv. Tela 1, 1981.Google Scholar
17. Brown, B. M. and Hewitt, J. I. (1975) Asymptotic likelihood theory for diffusion processes. J. Appl. Prob. 12, 228238.Google Scholar
18. Cox, D. R. and Lewis, P. A. W. (1966) Statistical Analysis of Series of Events. Methuen, London.Google Scholar
19. Ditlevsen, O. (1986) Random fatigue crack growth–a first passage problem. Eng. Fracture Mech. 23, 467477.Google Scholar
20. Ditlevsen, O. and Sobczyk, K. (1986) Random fatigue crack growth with retardation. Eng. Fracture Mech. 24, 861878.Google Scholar
21. Dolinski, K. (1986) Stochastic loading and material nonhomogeneity in fatigue crack propagation. Eng. Fracture Mech. 25, 809818.CrossRefGoogle Scholar
22. Esary, J. D., Marshall, A. W. and Proschan, F. (1974) Shock models and wear processes. Ann. Prob. 1, 627649.Google Scholar
23. Freudenthal, A. M., (ed.), (1956) Fatigue in Aircraft Structures. Academic Press, New York.Google Scholar
24. Freudenthal, A. M. and Gumbel, E. J. (1956) In Adv. Appl. Mech. IV, 117132.Google Scholar
25. Freudenthal, A. M. and Heller, R. A. (1959) On stress interaction in fatigue and a cumulative damage rule. J. Aerospace Eng. 26, No. 7 (July).Google Scholar
26. Gniedienko, B. V., Bieljajev, J. K. and Soloviev, A. D. (1965) Mathematical Methods in Reliability Theory (in Russian). Nauka, Moskow.Google Scholar
27. Gumbel, E. (1958) Statistics of Extremes. Columbia University Press, New York.Google Scholar
28. Hoeppner, D. W. and Krupp, W. E. (1974) Prediction of component life by application of fatigue crack growth knowledge. Eng. Fracture Mech. 6, 4770.Google Scholar
29. Jones, R. E. (1973) Fatigue crack growth retardation after single-cycle peak overload in Ti-611-4V titanium alloy. Eng. Fracture Mech. 5, 585604.Google Scholar
30. Kazimierczyk, P. (1986) Parametric Identification of Dynamical Systems Described by Stochastic Diffusion Markov Processes. Ph.D. Thesis, Inst. Fund. Techn. Res., Pol. Ac. Sci. Google Scholar
31. Keiding, N. (1974) Estimation in birth processes. Biometrika 61, 7180.Google Scholar
32. Kocanda, S. (1984) Fatigue of Metals (in Polish). WNT Warszawa.Google Scholar
33. Kogaiev, V. H. and Lebiedinski, S. G. (1983) Probabilistic model of fatigue crack growth (in Russian). Mashinoviedienije, No. 4.Google Scholar
34. Kordonskij, Kh. B. and Fridman, J. F. (1976) Some problems of probabilistic description of fatigue life time (in Russian). Zav. Laboratoria 42, No. 7.Google Scholar
35. Kozin, F. and Bogdanoff, J. L. (1981) A critical analysis of some probabilistic models of fatigue crack growth. Eng. Fracture Mech. 14, No. 1.Google Scholar
36. Kutojantz, J. A. (1980) Estimation of Parameters of Random Processes (in Russian). Erevan.Google Scholar
37. Lardner, R. W. (1966) Crack propagation under random loading. J. Mech. Phys. Solids 14, 141150.Google Scholar
38. Lardner, R. W. (1967) A theory of random fatigue. J. Mech. Phys. Solids 15, 205221.Google Scholar
39. Lin, Y. K. and Yang, J. N. (1983) On statistical moments of fatigue crack propagation. Eng. Fracture Mech. 18, 243256.Google Scholar
40. Madsen, H. O. (1982) Stochastic modelling of fatigue crack growth under variable amplitude loading. DIALOG 6-82, Danish Engineering Academy, Lyngby, 311328.Google Scholar
41. Matolcsy, M. (1974) Crack propagation under random loading. Acta Tech. Acad. Sci. Hungar. 77/4, 451477.Google Scholar
42. Misra, P. N. and Sorenson, H. W. (1975) Parameter estimation in Poisson processes. IEEE Trans. Inf. Theory 21, 8790.Google Scholar
43. Nemec, J. and Sedlacek, J. (1982) Statistical Problems of Safety of Structures (in Czech). Academia, Praga.Google Scholar
44. Oh, K. P. (1978) A weakest link model for the prediction of fatigue crack growth rate. J. Eng. Mat. Technol. 100, 170174.Google Scholar
45. Oh, K. P. (1979) A diffusion model for fatigue crack growth. Proc. R. Soc. London A367, 4758.Google Scholar
46. Oh, K. P. (1980) Prediction of fatigue life under random loading; a diffusion model. Int. J. Fatigue 2, 99104.Google Scholar
47. Parzen, E. (1967) On models for the probability of fatigue failure of a structure. In Time Series Analysis Papers, ed. Parzen, E.. Holden-Day, San Francisco.Google Scholar
48. Schijve, J. (1976) Observations on the prediction of fatigue crack growth under variable amplitude loading. In Fatigue Crack Growth under Spectrum Loads, ASTN STP 595, American Soc. for Testing and Materials, pp. 323.Google Scholar
49. Serensen, S. W. and Kogaiev, W. P. (1966) Stochastic theories of fatigue damage accumulation (in Russian). Mashinoviedienije 3, 6268.Google Scholar
50. Sobczyk, K. (1979) On the stochastic model for fatigue crack propagation. Bull. Acad. Pol. Sci., Ser. Sci. Techn. 27, No. 5/6.Google Scholar
51. Sobczyk, K. (1982) On the Markovian models for fatigue accumulation. J. Méc. Theor. Appl., Num. Spec., 147160.Google Scholar
52. Sobczyk, K. (1983) On the reliability models for random fatigue damage. Proc. 3rd Swedish-Polish Symp. New Problems in Continuum Mechanics, ed. Brulin, O. and Hsieh, R., Waterloo University Press.Google Scholar
53. Sobczyk, K. (1985) Stochastic modelling of fatigue crack growth. Proc. IUTAM Symp. Stochastic Methods in Mechanics of Solids and Structures (in Weibull memoriam). Eggwertz, S., and Lind, N. C.. Springer-Verlag, Berlin.Google Scholar
54. Sobczyk, K. (1986) Modelling of random fatigue crack growth. Eng. Fracture Mech. 24, 609623.Google Scholar
55. Stallmayer, J. E. and Walker, W. H. (1986) Cumulative damage theories and applications. J. Struct. Div. ASCE 94, 27392750.Google Scholar
56. Telreja, R. (1979) In fatigue reliability under random loads. Eng. Fracture Mech. 11, 717732, 1979.Google Scholar
57. Valluri, R. S. (1963) Some recent developments at GALCIT concerning a theory of metal fatigue. Acta Metal. 11, 759775, 1963.Google Scholar
58. Weibull, W. (1951) A statistical distribution function of wide applicability. ASME J. Appl. Mech. 18, 293297.Google Scholar
59. Yang, J. N. (1974) Statistics of random loading relevant to the fatigue. Proc. ASCE, J. Eng. Mech. Div. 100 (EM 3), 469475.Google Scholar
60. Yang, J. N. and Heer, E. (1971) Reliability of randomly excited structures. AIAA J. 9, No. 7, 12621268.Google Scholar