Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T21:14:40.423Z Has data issue: false hasContentIssue false

Some distributional results for Poisson-Voronoi tessellations

Published online by Cambridge University Press:  01 July 2016

Volker Baumstark*
Affiliation:
Universität Karlsruhe
Günter Last*
Affiliation:
Universität Karlsruhe
*
Postal address: Institut für Stochastik, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany.
Postal address: Institut für Stochastik, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the Voronoi tessellation based on a stationary Poisson process N in ℝd. We provide a complete and explicit description of the Palm distribution describing N as seen from a randomly chosen (typical) point on a k-face of the tessellation. In particular, we compute the joint distribution of the dk+1 neighbours of the k-face containing the typical point. Using this result as well as a fundamental general relationship between Palm probabilities, we then derive some properties of the typical k-face and its neighbours. Generalizing recent results of Muche (2005), we finally provide the joint distribution of the typical edge (typical 1-face) and its neighbours.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2007 

References

Asmussen, S. (2003). Applied Probability and Queues, 2nd edn. Springer, New York.Google Scholar
Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.Google Scholar
Mecke, J. (1967). Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitsth. 9, 3658.Google Scholar
Mecke, J. and Muche, L. (1995). The Poisson Voronoi tessellation. I. A basic identity. Math. Nachr. 176, 199208.CrossRefGoogle Scholar
Miles, R. (1974). A synopsis of ‘Poisson flats in Euclidean spaces’. In Stochastic Geometry, eds Harding, E. F. and Kendall, D. G., John Wiley, New York, pp. 202227.Google Scholar
Møller, J. (1989). Random tessellations in R d . Adv. Appl. Prob. 21, 3773.CrossRefGoogle Scholar
Møller, J. (1994). Lectures on Random Voronoi Tessellations (Lecture Notes Statist. 87). Springer, New York.Google Scholar
Muche, L. (2005). The Poisson–Voronoi tessellation: relationships for edges. Adv. Appl. Prob. 37, 279296.Google Scholar
Neveu, J. (1977). Processus ponctuels. In École d'Eté de Probabilités de Saint-Flour VI (Lecture Notes Math. 598). Springer, Berlin, pp. 249445.Google Scholar
Schneider, R. and Weil, W. (2000). Stochastische Geometrie. Teubner, Stuttgart.Google Scholar
Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd edn. John Wiley, Chichester.Google Scholar