Published online by Cambridge University Press: 01 July 2016
A learning matrix is defined by a set of input and output pattern vectors. The entries in these vectors are zeros and ones. The matrix is the maximum of the outer products of the input and output pattern vectors. The entries in the matrix are also zeros and ones. The product of this matrix with a selected input pattern vector defines an activity vector. It is shown that when the patterns are taken to be random, then there are central limit and large deviation theorems for the activity vector. They give conditions for when the activity vector may be used to reconstruct the output pattern vector corresponding to the selected input pattern vector.
Research supported by National Science Foundation grant DMS 810215.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.