Published online by Cambridge University Press: 01 July 2016
The winding number problem (Lévy (1940)) concerns the net angle through which the route of a random walk winds about the origin. We consider the problem of finding the winding number for a walk with finite step sizes; the eigenfunction method (Roberts and Ursell (1960)) is shown to be inapplicable because the probability distribution for a sequence of steps of different length depends on the order in which those steps are taken. In the diffusion limit, however, commutivity is restored. We derive the winding number distribution for a diffusion process, starting from a point displaced from the origin, and consider its asymptotic form. An important difference between the finite step and diffusion distributions is that the former possesses finite moments while the latter does not. We compute numerically the finite step distributions for 20000 particles undergoing N = 100000 steps, and compare the results with the diffusion distribution. Even for small winding numbers, perceptible differences between the two distributions appear even for N as large as 100000.
Present address: Mathematical Institute, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland.
The National Center for Atmospheric Research is supported by the National Science Foundation.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.