Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T02:59:52.783Z Has data issue: false hasContentIssue false

On Random Disc Polygons in Smooth Convex Discs

Published online by Cambridge University Press:  22 February 2016

F. Fodor*
Affiliation:
University of Szeged and University of Calgary
P. Kevei*
Affiliation:
MTA-SZTE Analysis and Stochastics Research Group
V. Vígh*
Affiliation:
University of Szeged
*
Postal address: Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary.
Postal address: Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary.
Postal address: Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we generalize some of the classical results of Rényi and Sulanke (1963), (1964) in the context of spindle convexity. A planar convex disc S is spindle convex if it is the intersection of congruent closed circular discs. The intersection of finitely many congruent closed circular discs is called a disc polygon. We prove asymptotic formulae for the expectation of the number of vertices, missed area, and perimeter difference of uniform random disc polygons contained in a sufficiently smooth spindle convex disc.

Type
Stochastic Geometry and Statistical Applications
Copyright
© Applied Probability Trust 

References

Ambrus, G., Kevei, P. and Vı´gh, V. (2012). The diminishing segment process. Statist. Prob. Lett. 82, 191195.CrossRefGoogle Scholar
Bárány, I. (2008). Random points and lattice points in convex bodies. Bull. Amer. Math. Soc. (N.S.) 45, 339365.CrossRefGoogle Scholar
Bezdek, K. (2010). Classical Topics in Discrete Geometry. Springer, New York.Google Scholar
Bezdek, K. (2013). Lectures on Sphere Arrangements—The Discrete Geometric Side (Fields Inst. Monogr. 32). Springer, New York.Google Scholar
Bezdek, K., Lángi, Z., Naszódi, M. and Papez, P. (2007). Ball-polyhedra. Discrete Comput. Geom. 38, 201230.CrossRefGoogle Scholar
Blaschke, W. (1956). Kreis und Kugel. Walter de Gruyter, Berlin.Google Scholar
Böröczky, K. J., Fodor, F., Reitzner, M. and Vígh, V. (2009). Mean width of random polytopes in a reasonably smooth convex body. J. Multivariate Anal. 100, 22872295.CrossRefGoogle Scholar
Danzer, L., Grünbaum, B. and Klee, V. (1963). Helly's theorem and its relatives. In Proc. Sympos. Pure Math., Vol. VII, American Mathematical Society, Providence, RI, pp. 101180.Google Scholar
Efron, B. (1965). The convex hull of a random set of points. Biometrika 52, 331343.Google Scholar
Eggleston, H. G. (1965). Sets of constant width in finite dimensional Banach spaces. Israel J. Math. 3, 163172.CrossRefGoogle Scholar
Fejes Tóth, L. (1953). Lagerungen in der Ebene, auf der Kugel und im Raum. Springer, Berlin.CrossRefGoogle Scholar
Fejes Tóth, L. (1982). Packing of r-convex discs. Studia Sci. Math. Hungar. 17, 449452.Google Scholar
Fejes Tóth, L. (1982). Packing and covering with r-convex discs. Studia Sci. Math. Hungar. 18, 6973.Google Scholar
Fodor, F. and Vı´gh, V. (2012). Disc-polygonal approximations of planar spindle convex sets. Acta Sci. Math. (Szeged) 78, 331350.CrossRefGoogle Scholar
Gruber, P. M. (1997). Comparisons of best and random approximation of convex bodies by polytopes. II International Conference in ‘Stochastic Geometry, Convex Bodies and Empirical Measures’ (Agrigento, 1996). Rend. Circ. Mat. Palermo (2) Suppl. 50, 189216.Google Scholar
Hug, D. (1999). Measures, curvatures and currents in convex geometry. Habilitationsschrift, Albert Ludwigs Universität Freiburg.Google Scholar
Kupitz, Y. S., Martini, H. and Perles, M. A. (2005). Finite sets in R d with many diameters – a survey. In Proceedings of the International Conference on Mathematics and Applications (ICMA-MU 2005, Bangkok), Mahidol University Press, Bangkok, pp. 91112.Google Scholar
Kupitz, Y. S., Martini, H. and Perles, M. A. (2010). Ball polytopes and the Vázsonyi problem. Acta Math. Hungar. 126, 99163.Google Scholar
Mayer, A. E. (1935). Eine Überkonvexität. Math. Z. 39, 511531.Google Scholar
McClure, D. E. and Vitale, R. A. (1975). Polygonal approximation of plane convex bodies. J. Math. Anal. Appl. 51, 326358.Google Scholar
Moreno, J. P. and Schneider, R. (2007). Continuity properties of the ball hull mapping. Nonlinear Anal. 66, 914925.Google Scholar
Moreno, J. P. and Schneider, R. (2012). Diametrically complete sets in Minkowski spaces. Israel J. Math. 191, 701720.CrossRefGoogle Scholar
Rényi, A. and Sulanke, R. (1963). Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitsth. 2, 7584.CrossRefGoogle Scholar
Rényi, A. and Sulanke, R. (1964). Über die konvexe Hülle von n zufällig gewählten Punkten. II. Z. Wahrscheinlichkeitsth. 3, 138147.Google Scholar
Rényi, A. and Sulanke, R. (1968). Zufällige konvexe Polygone in einem Ringgebiet. Z. Wahrscheinlichkeitsth. 9, 146157.Google Scholar
Santaló, L. A. (1946). Sobre figuras planas hiperconvexas. Summa Bras. Math. 1, 221239.Google Scholar
Schneider, R. (1993). Convex bodies: The Brunn–Minkowski Theory (Encyclopedia Math. Appl. 44). Cambridge University Press.Google Scholar
Schneider, R. (2008). Recent results on random polytopes. Boll. Unione Mat. Ital. (9) 1, 1739.Google Scholar
Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin.Google Scholar
Weil, W. and Wieacker, J. A. (1993). Stochastic geometry. In Handbook of Convex Geometry, Vol. A, B, North-Holland, Amsterdam, pp. 13911438.CrossRefGoogle Scholar