No CrossRef data available.
Published online by Cambridge University Press: 11 December 2025
The money exchange model is a type of agent-based model used to study how wealth distribution and inequality evolve through monetary exchanges between individuals. The primary focus of this model is to identify the limiting wealth distributions that emerge at the macroscopic level, given the microscopic rules governing the exchanges among agents. In this paper, we formulate generalized versions of the immediate exchange model, the uniform reshuffling model, and the uniform saving model, all of which are types of money exchange model, as discrete-time interacting particle systems and characterize their stationary distributions. Furthermore, we prove that, under appropriate scaling, the asymptotic wealth distribution converges to an exponential distribution for the uniform reshuffling model, and to either an exponential distribution or a gamma distribution depending on the tail behavior of the number of coins given/saved in the immediate exchange model and the random saving model, which generalizes the uniform saving model. In particular, our results provide a mathematically rigorous formulation and generalization of the assertions previously predicted in studies based on numerical simulations and heuristic arguments.