Published online by Cambridge University Press: 04 January 2016
We extend many of the classical results for standard one-dimensional diffusions to a diffusion process with memory of the form d X t =σ(X t ,X t )dW t , where X t = m ∧ inf0 ≤s≤t X s . In particular, we compute the expected time for X to leave an interval, classify the boundary behavior at 0, and derive a new occupation time formula for X. We also show that (X t ,X t ) admits a joint density, which can be characterized in terms of two independent tied-down Brownian meanders (or, equivalently, two independent Bessel-3 bridges). Finally, we show that the joint density satisfies a generalized forward Kolmogorov equation in a weak sense, and we derive a new forward equation for down-and-out call options.