Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T10:05:55.822Z Has data issue: false hasContentIssue false

Full classification of dynamics for one-dimensional continuous-time Markov chains with polynomial transition rates

Published online by Cambridge University Press:  12 September 2022

Chuang Xu*
Affiliation:
Technical University of Munich
Mads Christian Hansen*
Affiliation:
University of Copenhagen
Carsten Wiuf*
Affiliation:
University of Copenhagen
*
*Postal address: Faculty of Mathematics, Technical University of Munich, 85748 Garching bei München, Germany. Email address: Chuang.Xu@ma.tum.de
**Postal address: Department of Mathematical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark.
**Postal address: Department of Mathematical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark.

Abstract

This paper provides a full classification of the dynamics for continuous-time Markov chains (CTMCs) on the nonnegative integers with polynomial transition rate functions and without arbitrary large backward jumps. Such stochastic processes are abundant in applications, in particular in biology. More precisely, for CTMCs of bounded jumps, we provide necessary and sufficient conditions in terms of calculable parameters for explosivity, recurrence versus transience, positive recurrence versus null recurrence, certain absorption, and implosivity. Simple sufficient conditions for exponential ergodicity of stationary distributions and quasi-stationary distributions as well as existence and nonexistence of moments of hitting times are also obtained. Similar simple sufficient conditions for the aforementioned dynamics together with their opposite dynamics are established for CTMCs with unbounded forward jumps. Finally, we apply our results to stochastic reaction networks, an extended class of branching processes, a general bursty single-cell stochastic gene expression model, and population processes, none of which are birth–death processes. The approach is based on a mixture of Lyapunov–Foster-type results, the classical semimartingale approach, and estimates of stationary measures.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. F., Cappelletti, D., Koyama, M. and Kurtz, T. G. (2018). Non-explosivity of stochastically modeled reaction networks that are complex balanced. Bull. Math. Biol. 80, 25612579.CrossRefGoogle ScholarPubMed
Anderson, D. F. and Kim, J. (2018). Some network conditions for positive recurrence of stochastically modeled reaction networks. SIAM J. Appl. Math. 78, 26922713.CrossRefGoogle Scholar
Anderson, D. F. and Kurtz, T. G. (2011). Continuous time Markov chain models for chemical reaction networks. In Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology, eds Koeppl, H., Setti, G., M. di Bernardo and D. Densmore, Springer, New York, pp. 342.CrossRefGoogle Scholar
Anderson, D. F. and Kurtz, T. G. (2015). Stochastic Analysis of Biochemical Systems. Springer, Cham.CrossRefGoogle Scholar
Anderson, W. J. (1991). Continuous-Time Markov Chains: an Applications-Oriented Approach. Springer, New York.CrossRefGoogle Scholar
Aspandiiarov, S. and Iasnogorodski, R. (1999). Asymptotic behaviour of stationary distributions for countable Markov chains, with some applications. Bernoulli 5, 535569.CrossRefGoogle Scholar
Barbour, A. D. (1976). Quasi-stationary distributions in Markov population processes. Adv. Appl. Prob. 8, 296314.CrossRefGoogle Scholar
Be’er, S. and Assaf, M. (2016). Rare events in stochastic populations under bursty reproduction. J. Statist. Mech. Theory Experiment, article no. 113501.CrossRefGoogle Scholar
Brémaud, P. (2020). Markov Chains: Gibbs Fields, Monte Carlo Simulation and Queues, 2nd edn. Springer, Cham.CrossRefGoogle Scholar
Breyer, L. A. and Roberts, G. O. (1999). A quasi-ergodic theorem for evanescent processes. Stoch. Process. Appl. 84, 177186.CrossRefGoogle Scholar
Champagnat, N. and Villemonais, D. (2016). Exponential convergence to quasi-stationary distribution and Q-process. Prob. Theory Relat. Fields 164, 243283.CrossRefGoogle Scholar
Champagnat, N. and Villemonais, D. (2017). General criteria for the study of quasi-stationarity. Preprint. Available at https://arxiv.org/abs/1712.08092.Google Scholar
Chen, A., Pollet, P., Zhang, H. and Cairns, B. (2005). Uniqueness criteria for continuous-time Markov chains with general transition structures Adv. Appl. Prob. 37, 10561074.CrossRefGoogle Scholar
Chen, F.-M. (1999). Single birth processes. Chinese Ann. Math. Ser. A 20, 7782.CrossRefGoogle Scholar
Chen, M.-F. (2004). From Markov Chains to Nonequilibrium Particle Systems, 2nd edn. World Scientific, Singapore.CrossRefGoogle Scholar
Chen, R.-R. (1997). An extended class of time-continuous branching processes. J. Appl. Prob. 34, 1423.CrossRefGoogle Scholar
Chen, X. and Jia, C. (2020). Limit theorems for generalized density-dependent Markov chains and bursty stochastic gene regulatory networks. J. Math. Biol. 80, 959994.CrossRefGoogle ScholarPubMed
Collet, P., Martínez, S. and San Martín, J. (2013). Quasi-stationary Distributions: Markov Chains, Diffusions and Dynamical Systems. Springer, Heidelberg.CrossRefGoogle Scholar
Ethier, S. N. and Kurtz, T. G. (2009). Markov Processes: Characterization and Convergence. John Wiley, Hoboken, NJ.Google Scholar
Ewens, W. J. (2004). Mathematical Population Genetics 1: Theoretical Introduction. Springer, New York.CrossRefGoogle Scholar
Falk, J., Mendler, B. and Drossel, B. (2017). A minimal model of burst-noise induced bistability. PLoS ONE 12, article no. e0176410.CrossRefGoogle Scholar
Fernández, L. and de la Iglesia, M. D. (2021). Quasi-birth-and-death processes and multivariate orthogonal polynomials J. Math. Anal. Appl. 499, article no. 125029.CrossRefGoogle Scholar
Fernández, L., Kesten, H., Martinez, S. and Picco, P. (1995). Existence of quasi-stationary distributions. A renewal dynamical approach. Ann. Prob. 23, 501521.Google Scholar
Gardiner, C. W. (2009). Stochastic Methods: a Handbook for Physics, Chemistry and the Natural Sciences, 4th edn. Springer, Berlin.Google Scholar
Gibbs, A. L. and Su, F. E. (2002). On choosing and bounding probability metrics. Internat. Statist. Rev. 70, 419435.CrossRefGoogle Scholar
Gross, D. and Harris, C. M. (1998). Fundamentals of Queuing Theory, 3rd edn. Springer, New York.Google Scholar
He, G., Zhang, H. and Zhu, Y. (2019). On the quasi-ergodic distribution of absorbing Markov processes. Statist. Prob. Lett. 149, 116123.CrossRefGoogle Scholar
Karlin, S. and McGregor, J. L. (1957). The classification of birth and death processes. Trans. Amer. Math. Soc. 86, 366400.CrossRefGoogle Scholar
Lamperti, J. (1960). Criteria for the recurrence or transience of stochastic process. I. J. Math. Anal. Appl. 1, 314330.CrossRefGoogle Scholar
Li, Y. and Li, J. (2009). Criteria for Feller transition functions. J. Math. Anal. Appl. 359, 653665.CrossRefGoogle Scholar
Mackey, M. C., Tyran-Kamińska, M. and Yvinec, R. (2013). Dynamic behavior of stochastic gene expression models in the presence of bursting. SIAM J. Appl. Math. 73, 18301852.CrossRefGoogle Scholar
Menshikov, M. and Petritis, D. (2014). Explosion, implosion, and moments of passage times for continuous-time Markov chains: a semimartingale approach. Stoch. Process. Appl. 124, 23882414.CrossRefGoogle Scholar
Meyn, S. P. and Tweedie, R. L. (1993). Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes. Adv. Appl. Prob. 25, 518548.CrossRefGoogle Scholar
Meyn, S. P. and Tweedie, R. L. (2009). Markov Chains and Stochastic Stability, 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Miller, R. G. (1963). Stationary equations in continuous time Markov chains. Trans. Amer. Math. Soc. 109, 3544.Google Scholar
Norris, J. R. (1998). Markov Chains. Cambridge University Press.Google Scholar
Pastor-Satorras, R., Castellano, C., Van Mieghem, P. and Vespignani, A. (2015). Epidemic processes in complex networks. Rev. Modern Phys. 87, 925979.CrossRefGoogle Scholar
Reuter, G. E. H. (1957). Denumerable Markov processes and the associated contraction semigroups on l. Acta Math. 97, 146.CrossRefGoogle Scholar
Reuter, G. E. H. (1961). Competition processes. In Proc. 4th Berkeley Symp. Math. Statist. Prob., Vol. II, University of California Press, Berkeley, pp. 421430.Google Scholar
Schwabe, A., Rybakova, K. N. and Bruggeman, F. J. (2012). Transcription stochasticity of complex gene regulation models. Biophys. J. 103, 11521161.CrossRefGoogle ScholarPubMed
Shahrezaei, V. and Swain, P. S. (2008). Analytical distributions for stochastic gene expression. Proc. Nat. Acad. Sci. USA 105, 1725617261.CrossRefGoogle Scholar
Van Doorn, E. A. (1985). Conditions for exponential ergodicity and bounds for the decay parameter of a birth–death process. Adv. Appl. Prob. 17, 514530.CrossRefGoogle Scholar
Van Doorn, E. A. (1991). Quasi-stationary distributions and convergence to quasi-stationarity of birth–death processes. Adv. Appl. Prob. 23, 683700.CrossRefGoogle Scholar
Weidlich, W. and Haag, G. (1983). Concepts and Models of a Quantitative Sociology: the Dynamics of Interacting Populations. Springer, Berlin.CrossRefGoogle Scholar
Wilkinson, D. J. (2006). Stochastic Modelling for Systems Biology. Chapman & Hall/CRC, London.CrossRefGoogle Scholar
Wiuf, C. and Xu, C. (2020). Classification and threshold dynamics of stochastic reaction networks. Preprint. Available at https://arxiv.org/abs/2012.07954.Google Scholar
Xu, C., Hansen, M. C. and Wiuf, C. (2020). The asymptotic tails of limit distributions of continuous time Markov chains. Preprint. Available at https://arxiv.org/abs/2007.11390.Google Scholar
Xu, C., Hansen, M. C. and Wiuf, C. (2021). Structural classification of continuous time Markov chains with applications. Stochastics. Available at https://doi.org/10.1080/17442508.2021.2017937.CrossRefGoogle Scholar