Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Bingham, N. H.
1975.
Fluctuation theory in continuous time.
Advances in Applied Probability,
Vol. 7,
Issue. 04,
p.
705.
Malyshev, V. A.
1977.
Wiener-Hopf equations and their applications in probability theory.
Journal of Soviet Mathematics,
Vol. 7,
Issue. 2,
p.
129.
Rogers, L. C. G.
1990.
The two-sided exit problem for spectrally positive Lévy processes.
Advances in Applied Probability,
Vol. 22,
Issue. 02,
p.
486.
Chaumont, L.
1994.
Sur certains processus de lévy conditionnés à rester positifs.
Stochastics and Stochastic Reports,
Vol. 47,
Issue. 1-2,
p.
1.
Lachal, Aimé
2000.
First Exit Time from a Bounded Interval for a Certain Class of Additive Functionals of Brownian Motion.
Journal of Theoretical Probability,
Vol. 13,
Issue. 3,
p.
733.
Kim, Hyung Geun
and
Nam, Dougu
2001.
Optimal estimation of diffusion processes hidden by general obstacles.
Journal of Applied Probability,
Vol. 38,
Issue. 4,
p.
1067.
Dube, Parijat
Guillemin, Fabrice
and
Mazumdar, Ravi R.
2004.
Scale functions of Lévy processes and busy periods of finite-capacity M/GI/1 queues.
Journal of Applied Probability,
Vol. 41,
Issue. 4,
p.
1145.
Pistorius, M. R.
2004.
On Exit and Ergodicity of the Spectrally One-Sided Lévy Process Reflected at Its Infimum.
Journal of Theoretical Probability,
Vol. 17,
Issue. 1,
p.
183.
Zhou, Xiaowen
2004.
When does surplus reach a certain level before ruin?.
Insurance: Mathematics and Economics,
Vol. 35,
Issue. 3,
p.
553.
Jacobsen, Martin
2005.
The time to ruin for a class of Markov additive risk process with two-sided jumps.
Advances in Applied Probability,
Vol. 37,
Issue. 4,
p.
963.
Kadankov, V. F.
and
Kadankova, T. V.
2005.
On the distribution of the time of the first exit from an interval and the value of a jump over the boundary for processes with independent increments and random walks.
Ukrainian Mathematical Journal,
Vol. 57,
Issue. 10,
p.
1590.
Nok Chiu, Sung
and
Yin, Chuancun
2005.
Passage times for a spectrally negative Lévy process with applications to risk theory.
Bernoulli,
Vol. 11,
Issue. 3,
Kadankov, V. F.
and
Kadankova, T. V.
2006.
Two-boundary problems for a Poisson process with exponentially distributed component.
Ukrainian Mathematical Journal,
Vol. 58,
Issue. 7,
p.
1042.
Kyprianou, A. E.
and
Surya, B. A.
2006.
Principles of smooth and continuous fit in the determination of endogenous bankruptcy levels.
Finance and Stochastics,
Vol. 11,
Issue. 1,
p.
131.
Ezhov, I. I.
Kadankov, V. F.
and
Kadankova, T. V.
2007.
Two-boundary problems for a random walk.
Ukrainian Mathematical Journal,
Vol. 59,
Issue. 11,
p.
1668.
Kadankova, T.
and
Veraverbeke, N.
2007.
On Several Two-Boundary Problems for a Particular Class of Lévy Processes.
Journal of Theoretical Probability,
Vol. 20,
Issue. 4,
p.
1073.
Kyprianou, Andreas E.
and
Palmowski, Zbigniew
2008.
Séminaire de Probabilités XLI.
Vol. 1934,
Issue. ,
p.
121.
Kyprianou, Andreas
and
Rivero, Victor
2008.
Special, conjugate and complete scale functions for spectrally negative Lévy processes.
Electronic Journal of Probability,
Vol. 13,
Issue. none,
Baurdoux, E. J.
2009.
Last Exit Before an Exponential Time for Spectrally Negative Lévy Processes.
Journal of Applied Probability,
Vol. 46,
Issue. 02,
p.
542.
Hubalek, F.
and
Kyprianou, E.
2011.
Seminar on Stochastic Analysis, Random Fields and Applications VI.
p.
119.