Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T21:46:02.657Z Has data issue: false hasContentIssue false

The direct-connectedness function in the random connection model

Published online by Cambridge University Press:  24 August 2022

Sabine Jansen*
Affiliation:
Ludwig-Maximilians-Universität München
Leonid Kolesnikov*
Affiliation:
Ludwig-Maximilians-Universität München
Kilian Matzke*
Affiliation:
Ludwig-Maximilians-Universität München
*
*Postal address: Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstraße 39, 80333 München, Germany.
*Postal address: Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstraße 39, 80333 München, Germany.
*Postal address: Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstraße 39, 80333 München, Germany.

Abstract

We investigate expansions for connectedness functions in the random connection model of continuum percolation in powers of the intensity. Precisely, we study the pair-connectedness and the direct-connectedness functions, related to each other via the Ornstein–Zernike equation. We exhibit the fact that the coefficients of the expansions consist of sums over connected and 2-connected graphs. In the physics literature, this is known to be the case more generally for percolation models based on Gibbs point processes and stands in analogy to the formalism developed for correlation functions in liquid-state statistical mechanics.

We find a representation of the direct-connectedness function and bounds on the intensity which allow us to pass to the thermodynamic limit. In some cases (e.g., in high dimensions), the results are valid in almost the entire subcritical regime. Moreover, we relate these expansions to the physics literature and we show how they coincide with the expression provided by the lace expansion.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Betsch, S. and Last, G. (2021). On the uniqueness of Gibbs distributions with a non-negative and subcritical pair potential. Preprint. Available at https://arxiv.org/abs/2108.06303.Google Scholar
Brydges, D. C. (1986). A short course on cluster expansions. In Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge (Les Houches, 1984), Parts I–II, North-Holland, Amsterdam, pp. 129183.Google Scholar
Brydges, D. C. and Spencer, T. (1985). Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys. 97, 125148.CrossRefGoogle Scholar
Campanino, M. and Ioffe, D. (2002). Ornstein–Zernike theory for the Bernoulli bond percolation on $\Bbb Z^d$ . Ann. Prob. 30, 652682.CrossRefGoogle Scholar
Chiew, Y. C. and Stell, G. (1989). Connectivity and percolation of randomly centered spheres: correction to the Percus–Yevick approximation. J. Chemical Phys. 90, 49564959.CrossRefGoogle Scholar
Coniglio, A., DeAngelis, U. and Forlani, A. (1977). Pair connectedness and cluster size. J. Phys. A 10, 11231139.CrossRefGoogle Scholar
Hansen, J. P. and McDonald, I. R. (2013). Theory of Simple Liquids: with Applications to Soft Matter. Academic Press, Amsterdam.Google Scholar
Hara, T. and Slade, G. (1990). Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys. 128, 333391.CrossRefGoogle Scholar
Heydenreich, M. and van der Hofstad, R. (2017). Progress in High-Dimensional Percolation and Random Graphs. Springer, Cham.CrossRefGoogle Scholar
Heydenreich, M., van der Hofstad, R., Last, G. and Matzke, K. (2019). Lace expansion and mean-field behavior for the random connection model. Preprint. Available at https://arxiv.org/abs/1908.11356.Google Scholar
Hill, T. L. (1955). Molecular clusters in imperfect gases. J. Chem. Phys. 23, 617622.CrossRefGoogle Scholar
Jansen, S. (2016). Continuum percolation for Gibbsian point processes with attractive interactions. Electron. J. Prob. 21, article no. 47, 22 pp.CrossRefGoogle Scholar
Kingman, J. F. C. (1967). Completely random measures. Pacific J. Math. 21, 5978.CrossRefGoogle Scholar
Last, G. and Penrose, M. D. (2018). Lectures on the Poisson Process. Cambridge University Press.Google Scholar
Last, G. and Ziesche, S. (2017). On the Ornstein–Zernike equation for stationary cluster processes and the random connection model. Adv. Appl. Prob. 49, 12601287.CrossRefGoogle Scholar
Malyshev, V. A. and Minlos, R. A. (1991). Gibbs Random Fields: Cluster Expansions (Mathematics and Its Applications (Soviet Series), Vol. 44). Kluwer Academic Publishers Group, Dordrecht.Google Scholar
Meester, R. (1995). Equality of critical densities in continuum percolation. J. Appl. Prob. 32, 90104.CrossRefGoogle Scholar
Meester, R. and Roy, R. (1996). Continuum Percolation. Cambridge University Press.CrossRefGoogle Scholar
Ogata, Y. and Tanemura, M. (1989). Likelihood estimation of soft-core interaction potentials for Gibbsian point patterns. Ann. Inst. Statist. Math. 41, 583600.CrossRefGoogle Scholar
Ornstein, L. S. and Zernike, F. (1914). Accidental deviations of density and opalescence at the critical point of a single substance. Proc. Akad. Sci. (Amsterdam) 17, 793806.Google Scholar
Penrose, M. D. (1993). On the spread-out limit for bond and continuum percolation. Ann. Appl. Prob. 3, 253276.CrossRefGoogle Scholar
Slade, G. (2006). The Lace Expansion and Its Applications: École d’été de Probabilités de Saint-Flour XXXIV—2004. Springer, Berlin.Google Scholar
Stell, G. (1976). Correlation functions and their generating functionals: general relations with applications to the theory of fluids. In Phase Transitions and Critical Phenomena, Vol. 5b, Academic Press, London, pp. 205258.Google Scholar
Stell, G. (1996). Continuum theory of percolation and association. Physica A 231, 119.CrossRefGoogle Scholar
Torquato, S. (2002). Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Interdisciplinary Applied Mathematics, Vol. 16). Springer, New York.Google Scholar