Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T20:52:33.306Z Has data issue: false hasContentIssue false

A diffusion model for bookstein triangle shape

Published online by Cambridge University Press:  01 July 2016

Wilfrid S. Kendall*
Affiliation:
University of Warwick
*
Postal address: Statistics, University of Warwick, Coventry CV4 7AL, UK. Email address: w.s.kendall@warwick.ac.uk

Abstract

A stochastic dynamical context is developed for Bookstein's shape theory. It is shown how Bookstein's shape space for planar triangles arises naturally when the landmarks are moved around by a special Brownian motion on the general linear group of invertible (2×2) real matrices. Asymptotics for the Brownian transition density are used to suggest an exponential family of distributions, which is analogous to the von Mises-Fisher spherical distribution and which has already been studied by J. K. Jensen. The computer algebra implementation Itovsn3 (W. S. Kendall) of stochastic calculus is used to perform the calculations (some of which actually date back to work by Dyson on eigenvalues of random matrices and by Dynkin on Brownian motion on ellipsoids). An interesting feature of these calculations is that they include the first application (to the author's knowledge) of the Gröbner basis algorithm in a stochastic calculus context.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 1998 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ben Arous, G., Cranston, M. and Kendall, W. S. (1995). Coupling constructions for hypoelliptic diffusions: Two examples. In Stochastic Analysis 57: Summer Research Institute, 11–30 July 1993, eds. Cranston, M. and Pinsky, M.. Providence, RI, American Mathematical Society, p. 193212.Google Scholar
[2] Baxendale, P. (1984). Brownian motions on the diffeomorphism group I. Compositio Mathematica 53, 1950.Google Scholar
[3] Baxendale, P. (1986). Asymptotic behaviour of stochastic flows of diffeomorphisms: two case studies. Prob. Theory Relat. Fields 73, 5185.Google Scholar
[4] Bookstein, F. L. (1986). Size and shape spaces for landmark data in two dimensions (with discussion). Statist. Sci. 1, 181242.Google Scholar
[5] Bookstein, F. L. (1989). Principal warps: thin plate splines and the decomposition of deformations. IEEE Trans. Pattern Analysis Machine Intell. 11, 567585.CrossRefGoogle Scholar
[6] Bookstein, F. L. (1991). Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press.Google Scholar
[7] Bott, R. and Tu, L. W. (1982). Differential Forms in Algebraic Topology. Springer, New York, Heidelberg, Berlin.CrossRefGoogle Scholar
[8] Broadbent, S. R. (1980). Simulating the ley-hunter. J. R. Statist. Soc. A, 143, 109140.Google Scholar
[9] Carne, T. K. (1990). The geometry of shape spaces. Proc. London Math. Soc. Third Series 61, 407432.Google Scholar
[10] Cartan, H. (1928). Leçons sur la géometrie des espaces de {Riemann}. Gauthiers-Villars, Paris.Google Scholar
[11] Chavel, I. (1984). Eigenvalues in {Riemannian} {Geometry}. Academic Press, New York.Google Scholar
[12] Davenport, J. H., Siret, Y. and Tournier, E. (1988). Computer {Algebra}: Systems and Algorithms for Algebraic Computation. Academic Press, New York.Google Scholar
[13] Dryden, I., Faghihi, M. and Taylor, C. C. (1995). Investigating regularity in spatial point patterns using shape analysis. In Current Issues in Statistical Shape Analysis, eds Mardia, K. V. and Gill, C. A.. University of Leeds Press, pp. 4048.Google Scholar
[14] Dynkin, E. B. (1961). Non-negative eigenfunctions of the {Laplace–Beltrami} operator and {Brownian} motion in certain symmetric spaces. Dokl. Akad. Nauk SSSR 141, 288291.Google Scholar
[15] Dyson, F. J. (1962). A {Brownian-motion} model for the eigenvalues of a random matrix. J. Math. Phys. 3, 11911198.Google Scholar
[16] Emery, M. and Mokobodzki, G. (1991). Sur le barycentre d'une probabilité dans une variéte. In Séminaire de Probabilités XXV, Lecture Notes in Mathematics 1485. Springer, New York, pp. 220233.Google Scholar
[17] Fréchet, M., (1948). Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10, 215310.Google Scholar
[18] Gelfand, A. E., Graev, M. I. and Vilenkin, N. Ya. (1966). Generalized Functions {Volume} 5: {Integral} geometry and representation theory. Academic Press, New York.Google Scholar
[19] Gruet, J.-C. (1996). Semi-groupe du mouvement {Brownien} hyperbolique. Stochastics and Stoch. Rep. 56, 5361.Google Scholar
[20] Hearn, A. C. (1993). REDUCE User's Manual, version 3.5. RAND publication {CP78} {Rev} 10/93)}. The RAND Corporation, Santa Monica.Google Scholar
[21] Helgason, S. (1978). Differential Geometry, {Lie} Groups, and Symmetric Spaces. Academic Press, New York.Google Scholar
[22] Ikeda, N. and Watanabe, S. (1981). Stochastic Differential Equations and Diffusion Processes (First Edition). North-Holland, Kodansha, Amsterdam, Tokyo.Google Scholar
[23] Jensen, J. K. (1981). On the hyperboloid distribution. Scandinavian J. Statist. Theory Appl. 8, 193206.Google Scholar
[24] Karcher, H. (1977). Riemannian centre of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509541.Google Scholar
[25] Kendall, D. G. (1977). The diffusion of shape. Adv. Appl. Prob. 9, 428430.Google Scholar
[26] Kendall, D. G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bull. London Math. Soc. 16, 81121.Google Scholar
[27] Kendall, D. G. (1985). Exact distributions for shapes of random triangles in convex sets. Adv. Appl. Prob. 17, 308329.Google Scholar
[28] Kendall, D. G. (1989). A survey of the statistical theory of shape (with discussion). Statist. Sci. 4, 87120.Google Scholar
[29] Kendall, D. G. (1991). The {Mardia–Dryden} shape distribution for triangles – a stochastic calculus approach. J. Appl. Prob. 28, 225230.Google Scholar
[30] Kendall, D. G. and Kendall, W. S. (1980). Alignments in two-dimensional random sets of points. Adv. Appl. Prob. 12, 380424.Google Scholar
[31] Kendall, W. S. (1988). Symbolic computation and the diffusion of shapes of triads. Adv. Appl. Prob. 20, 775797.Google Scholar
[32] Kendall, W. S. (1990). The {Euclidean} diffusion of shape. In Disorder in Physical Systems, eds Welsh, D. and Grimmett, G.. Oxford University Press, pp. 203217.Google Scholar
[33] Kendall, W. S. (1990). Probability, convexity, and harmonic maps with small image I: {Uniqueness} and fine existence. Proc. London Math. Soc. Third Series 61, 371406.CrossRefGoogle Scholar
[34] Kendall, W. S. (1991). Symbolic {Itô} calculus: An overview. In Probabilités Numeriques, eds Bouleau, N. and Talay, D.. INRIA, Rocquencourt, France, pp. 186192.Google Scholar
[35] Kendall, W. S. (1993). Itovsn3: Doing stochastic calculus with Mathematica . In Economic and Financial Modeling with Mathematica, ed. Varian, H.. Springer, New York, pp. 214238.Google Scholar
[36] Kendall, W. S. (1994). Probability, convexity, and harmonic maps II: {Smoothness} via probabilistic gradient inequalities. J. Functional Analysis 126, 228257.Google Scholar
[37] Kent, J. T. (1992). New directions in shape analysis. In The Art of Statistical Science, ed. Mardia, K. V.. Wiley, Chichester, pp. 115127.Google Scholar
[38] Kent, J. T. (1994). The complex Bingham distribution and shape analysis. J. R. Statist. Soc. Series B. Methodological 56, 285299.Google Scholar
[39] Kent, J. T. and Mardia, K. V. (1994). The link between kriging and thin-plate splines. In Probability, Statistics and Optimization, ed. Kelly, F. P.. Wiley, Chichester, pp. 326339.Google Scholar
[40] Kifer, Yu. (1976). Brownian motion and harmonic functions on manifolds of negative curvature. Theory of Probability and its Applications. An English translation of the Soviet journal Teoriya Veroyatnostei iee Primeneniya 21, 8195.Google Scholar
[41] Le, H. L. (1991). A stochastic calculus approach to the shape distribution induced by a complex normal model. Math. Proc. Camb. Phil. Soc. 109, 221228.Google Scholar
[42] Le, H. L. (1995). Mean size-and-shapes and mean shapes: a geometric point of view. Adv. Appl. Prob. 27, 4455.Google Scholar
[43] MacCallum, M. A. H. and Wright, F. J. (1991). Algebraic Computing with {REDUCE}. Oxford, Clarendon Press.Google Scholar
[44] Mardia, K.V. (1972). Statistics of Directional Data. New York, Academic Press.Google Scholar
[45] Mardia, K. V. and Dryden, I. L. (1989). Shape distributions for landmark data. Adv. Appl. Prob. 21, 742755.Google Scholar
[46] Norris, J. R., Rogers, L. C. G. and Williams, D. (1986). Brownian motion of ellipsoids. Trans. Amer. Math. Soc. 294, 757765.Google Scholar
[47] Oller, J. M. and Corcuera, J. M. (1993). Intrinsic analysis of the statistical estimation. Ann. Statist. 23, 15621581.Google Scholar
[48] Orihara, A. (1970). On random ellipsoid. J. Faculty of Sci. University of Tokyo. Section IA. Mathematics 17, 7385.Google Scholar
[49] Pistone, G. and Wynn, H. P. (1996). Generalized confounding with {Gröbner} bases. Biometrika 83, 653666.Google Scholar
[50] Prat, J. J. (1975). Étude asymptotique et convergence angulaire du mouvement brownien sur une variété à courbure négative. C.R. Acad. Sciences Paris Séries A–B, 280A, 15391542.Google Scholar
[51] Rees, E. G. (1983). Notes on Geometry. Springer, New York, Heidelberg, Berlin.Google Scholar
[52] Revuz, D. and Yor, M. (1991). Continuous Martingales and Brownian Motion. Springer, New York, Heidelberg, Berlin.Google Scholar
[53] Roberts, P. H. and Ursell, H. D. (1960). Random walk on a sphere and a {Riemannian} manifold. Phil. Trans. R. Soc. London A, 252, 317356.Google Scholar
[54] Rogers, L. C. G. and Williams, D. (1987). Diffusions, Markov Processes, and Martingales, volume 2: Itô Calculus. Wiley, Chichester, New York.Google Scholar
[55] Small, C. G. (1988). Techniques of shape-analysis on sets of points. Int. Statist. Rev. (Revue Int. Statistique) 56, 243257.Google Scholar
[56] Small, C. G. (1996). The Statistical Theory of Shape. Springer, New York, Heidelberg, Berlin.Google Scholar
[57] Small, C. G. and Lewis, M. E. (1995). Shape metrics and Frobenius norms. In Current Issues in Statistical Shape Analysis, eds Mardia, K. V. and Gill, C. A.. University of Leeds Press, pp. 8895.Google Scholar
[58] Taylor, J. C. (1988). The {Iwasawa} decomposition and the limiting behavior of {Brownian} motion on a symmetric space of non-compact type. In The Geometry of Random Motion, eds Durrett, R. and Pinsky, M., Contemporary Mathematics 73. Providence, RI, American Mathematical Society, pp. 303332.Google Scholar
[59] Ziezold, H. (1994). Mean figures and mean shapes applied to biological figure and shape distributions in the plane. Biometrical J. 36, 491510.Google Scholar