Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T23:41:21.714Z Has data issue: false hasContentIssue false

Determining convex polygons from their covariograms

Published online by Cambridge University Press:  01 July 2016

Gabriele Bianchi*
Affiliation:
Università degli Studi di Ferrara
*
Current address: Dipartimento di Ingegneria Agraria e Forestale, Università di Firenze, Piazzale delle Cascine 15, I-50144 Firenze, Italy. Email address: gabriele.bianchi@unifi.it

Abstract

Knowing the (geometric) covariogram of a convex body is equivalent to knowing, for each direction u, the distribution of the lengths of the chords of that body which are parallel to u. We prove that the covariogram determines convex polygons, among all convex bodies, up to translation and reflection. This gives a partial answer to a problem posed by Matheron.

Type
Stochastic Geometry and Statistical Applications
Copyright
Copyright © Applied Probability Trust 2002 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R. J. and Pyke, R. (1991). Problem 91–3. Inst. Math. Statist. Bull. 20, 409.Google Scholar
Bianchi, G., Segala, F. and Volcic, A. (2000). The Solution of the Covariogram Problem for Plane C2_+ Bodies (Quaderni Matematici 485). Dipartimento di Scienze Matematiche, Università di Trieste.Google Scholar
Gardner, R. J. (1995). Geometric Tomography. Cambridge University Press.Google Scholar
Gardner, R. J. and Zhang, G. (1998). Affine inequalities and radial mean bodies. Amer. J. Math. 120, 493504.CrossRefGoogle Scholar
Hurt, N. E. (1989). Phase Retrieval and Zero Crossing. Kluwer, Dordrecht.CrossRefGoogle Scholar
Mallows, C. L. and Clark, J. M. (1970). Linear-intercept distributions do not characterize plane sets. J. Appl. Prob. 7, 240244 .Google Scholar
Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York.Google Scholar
Matheron, G. (1986). Le covariogramme géometrique des compacts convexes de R2 . Tech. Rep. 2/86, Centre de Géostatistique, École des Mines de Paris.Google Scholar
Nagel, W. (1993). Orientation-dependent chord length distributions characterize convex polygons. J. Appl. Prob. 30, 730736.Google Scholar
Nagel, W. (1993). A proof of the theorem: Orientation-dependent chord length distributions characterize convex polygons. Forschungsergebnisse, Mathematischen Fakultat, Friedrich-Schiller-Universität, Jena.Google Scholar